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Kurze Zusammenfassung

Die Arbeit beschäftigt sich mit der lokalen Vorverarbeitung von Sensordaten durch au-
tonome Agenten und beschreibt Szenarien, in denen diese eingesetzt werden können. Auf
Basis dieser Szenarien werden Anforderungen formuliert. Im Anschluß an die Betrach-
tung verwandter Ansätze wird die AIP-Architektur (Autonomous Information Process-
ing) entwickelt, die als Grundlage für die Implementierung eines Frameworks dient, mit
dem die Agenten erstellt werden. Ein Prototyp für die computergestützte Altenpflege
wird beschrieben. Die Arbeit endet mit einer Diskussion über Verbesserungen und Er-
weiterungen.

Short Abstract

The thesis investigates local preprocessing of sensor data by autonomous agents and
presents scenarios for applications. From these scenarios requirements are derived. After
the study of related approaches an architecture for autonomous information processing
(AIP-Architecture) is developed as a base for implementing a framework for the generation
of agents. A prototype for computer aided care of elderly people is explained. The thesis
concludes with a discussion on possible improvements and extensions.
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Chapter 0

Introduction

0.1 Basic Motivation and Problem Statement

The idea of a robot, as an autonomously acting machine, is rather old. Already in the
18th century a fully automated loom was constructed. In the centuries thereafter further
mechanical automats came up, until in 1954 George C. Devol filed a patent application
for the first electronic and programmable manipulator. Nowadays robots are widespread.
Pushed by influential industries like the automobile industry, mainly industrial robots
are developed. Often these robots do not possess any sensors. They rather remember
sequences of motions taught through control and input devices. But there is also remark-
able progress in the area of sensor guided robots. Well known probably are soccer playing
robots, who even compare their skills in world championships. [31, 64]
Modern robots are controlled by integrated software that processes sensor data and trig-
gers actions accordingly. In fact it seemed natural to employ autonomous entities inde-
pendently of robots. By the end of the 1970s the name software agent came up for
these entities. Potential properties of software agents are [31, 79]:

• Knowledge storing and representing. Agents have beliefs about the world and
themselves.

• Learning aptitude.

• Reasoning and planning.

• Ability to frame and pursue goals or desires.

• Adaptability.

• Collaboration with other agents.

Even if not all properties are necessary, at least a few of them should be present to call it
an agent. Opinions differ about the minimum requirements. Usually one does not talk of

1



2 0.2. THESIS-STRUCTURE AND COURSE OF ARGUMENTATION

an intelligent agent, unless it can adapt itself to the environment on the base of its own
sensory perception.
Even if the potentials of (intelligent) agents are by far not yet exhausted, agents are
utilized in various fields. E. g. they filter information in the internet, control persons in
computer games and even steer vehicles on other planets.
The objective of this thesis is to develop an agent for the preprocessing of sensor
data. The idea is to install it in major systems that employ a variety of sensors. The
advantages of preprocessing are:

• Filtering. Irrelevant data can be filtered out, e. g. when a value did not change.
Data can be fused before the filter is applied, as in some cases the categorization
of data is easier having a broader view.
Learning algorithms can be used in cases, where it is difficult to categorize data
for filtering. The program can learn in advance or at runtime, which data is to be
neglected.

• Locality. Data is processed there, where it is measured. Filtering reduces data
traffic and relieves the application. In spite of growing speed and memory size
a central processor may still form the system’s bottleneck.

• Modularity. Preprocessing simplifies the application’s logic. The problem splits
into the application program and the adjustment of the agents. This principle is
called modularity or encapsulation and supports the separation of concerns.

Because a priori we do not know which software will be applied and because the meaning
of agent is somewhat vague we will in the sequel not speak of an agent but rather neutrally
of a module. And since it deals with autonomous (sensor) information processing
(AIP), we call it an AIP module.

0.2 Thesis-Structure and Course of Argumentation

Chapter 1

In chapter 1 the definition of a sensor is stated. Several scenarios for the AIP module
are explained and requirements are derived from them. These requirements are taken in
chapter 2 to evaluate related work and in chapter 3 for developing the AIP architecture.
To prepare for the scenarios some wireless technologies used in them are presented.

Chapter 2

In order to illuminate the requirements of chapter 1 and to illustrate the means of data
preprocessing, concepts and processing tools are introduced. Some of these concepts and
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tools are employed by related architectures, which are presented afterwards together with
an investigation in how far these architectures meet the requirements.

Chapter 3

Chapter 3 is devoted to the AIP architecture. In the design rationale we argue what
the overall architecture must look like to satisfy the requirements. After an overview the
parts of the architecture are studied in detail. Then the requirements from chapter 1 are
checked. Finally the software requirements due to the architecture are formulated.

Chapter 4

Based on the AIP architecture of chapter 3 the implementation of a prototype is examined.
The chapter’s structure follows the previous one considering the parts one after another.
Software tools that were utilized or considered along the way are discussed.

Chapter 5

This chapter presents the implementation of the scenario “Smart Elderly Care Home”
taken from 1. The sensors and the environment are simulated by a computer program.

Chapter 6

The thesis is concluded by a summary and a critical discussion of the results.
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Chapter 1

Scenarios and Requirements

This chapter describes several scenarios which illustrate the different demands made on a soft-
ware module for distributed sensor data processing. From these scenarios and from the general
idea of sensor data processing we will derive the basic requirements. First we will discuss an
extended definition of a sensor and give a short overview of the wireless technologies used in the
scenarios.

1.1 Sensors

As sensors are fundamental features in engineering, there are lots of definitions in lit-
erature. The most common definition – with slight differences found in various books
[31, 65] – is:

A sensor is a system that converts a physical quantity and its changes into
appropriate electric signals.

These sensor signals will then be processed by a measuring device that provides the data
in a form usable for men or machines. As we are not primarily interested in the sensors
themselves, we consider sensor and measuring device as one unit. It provides us with
data, either answering a request (pull mode) or automatically at certain intervals (push
mode). Therefore we abstract and extend the definition for our purposes:

A sensor is a system that retrieves data, especially measurements of physical
quantities, and transfers it over a software interface.

On this basis we will be able to treat any data source as sensor. Hence databases and
common sensors can be handled the same way.

5



6 1.2. WIRELESS TECHNOLOGIES

1.2 Wireless Technologies

Recently wireless technologies gained importance. During the last ten years several new
standards were developed. Since wireless technologies play a major role in the scenarios,
we will give a brief survey of standards and their properties. WLAN (Wireless Local
Area Network), Bluetooth, ZigBee, NFC (Near Field Communication) and RFID (Radio
Frequency Identification) are wireless technologies that answer different purposes.
The Radio Frequency Identification (RFID) is used for automatic identification.
We distinguish RFID tags and RFID readers. A RFID tag is a transponder (artificial
word combining transceiver and responder). That means it receives signals and answers
automatically to them. The RFID reader on the other hand sends signals in order to read
tags. Often RFID tags send back 32, 64 or 96 bit identification or serial numbers only,
because these tags are normally used for mere identification. But they may also have
memory up to 2048 byte.
One distinguishes passive, semi-active and active tags.

• Passive tags have no internal power supply. The electrical current induced in
the antenna by the incoming radio frequency signal must be used to power the IC
(integrated circuit) and transmit a response. The range is limited to typically a few
centimeters, but can be a few meters. As no battery is needed, the tag is small and
its lifespan is unlimited.

• Semi-active tags have a battery to power the IC constantly, so that the antenna
only has to collect power for the backscattering signal, thus reducing the response
time.

• Active tags have an internal power supply to power any ICs and to generate the
outgoing signal. They can have a larger memory than passive tags and a longer
range, up to tens of meters. The smallest devices have the size of a coin.

Transponders were invented in the 1920s, used by the military in the mid 1940s and in
business in the late 1960s. At present there is done a lot of research, where and how RFID
can be used in modern industry and society. [9, 63, 62]
The Near Field Communication (NFC) is – according to expectations – also a short
range wireless technology, having a range of only a few centimeters. It was jointly de-
veloped by Sony and Philips and became an ISO standard in December 2003. Half a
year later Nokia, Sony and Philips formed the NFC Forum [50]. The coverage of NFC is
arranged for electronic payment and ticketing and for establishing longer range wireless
connections by “touching”. “Touching” means that two NFC devices are brought together
in order to communicate, e. g. to exchange the configuration data and set up a faster
connection for longer range. [48, 61]
As NFC is quite new, applications are still developing. In Hessen, Germany, Nokia, Philips
and the Rhein-Main-Verkehrsverbund (RMV) started the first NFC-enabled ticketing in
public transportation. In buses and trains of the RMV passengers can “touch” the ter-
minals with their mobile phones to sign on, when entering, and to sign off, when leaving.
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At the end of the month they get a post-paid-bill, similar to a phone bill [52, 51].
An other application area is starting a longer data transmission by “touching”. For exam-
ple, photos were taken with a built-in camera of a PDA or mobile phone. To display the
pictures on the TV set, one only has to “touch” the TV set with the mobile device to start
for instance a Bluetooth connection. The photos are transmitted over the connection and
shown on the TV screen. [49]
Bluetooth is an industrial specification for Wireless Personal Area Networks (WPAN)
that was developed by Ericsson and resumed in 1999 by the Bluetooth Special Interest
Group (SIG). Bluetooth provides a way to connect and exchange information between
devices like personal digital assistants (PDAs), mobile phones, PCs and printers. The
features of Bluetooth involve low power consumption, the use of a low-cost transceiver
microchip and a globally available radio frequency for short range connections (0.1, 10,
100 or up to 400 meters). Bluetooth became a Wireless PAN standard (IEEE 802.15.1).
[58, 41]
During the boom of mobile devices (mobile phones, PDAs and smart phones), Bluetooth
was developed, and lots of applications deal with the data transmission between mobile
devices, between mobile devices and PCs and between PCs and peripheral devices like
printers and headsets.
ZigBee is a wireless technology which is also meant to build up Wireless Personal Area
Networks (WPAN) with low data rates and low power consumption, but is designed to be
simpler and cheaper than Bluetooth. Its transmission range is 10 to 75 meters. ZigBee
1.0 was ratified in December 2004. [67]
Wireless Local Area Networks (WLAN) have in contrast to WPANs higher trans-
mission power, range and transfer rates. Depending on the antenna the range is between
30 and 300 meters. In the late 1990s, after several proprietary protocols, a few standards
were introduced that all belong to the IEEE 802.11 family. WLAN is used in two different
modes [66]:

• The infrastructure mode is normally used to connect the wireless network with
a wired Ethernet network or with other wireless networks. A base-station, usually
a wireless access point, serves as the central WLAN communication station and
coordinates the networks nodes. This is typically used by a stand-alone base-station.

• In the ad-hoc mode or peer-to-peer mode there is no special station for the
coordination. All stations are peers. Ad-hoc-networks are easy to build up. It’s not
intended that packets are forwarded, so that it is possible that not every computer
can reach all others.

In general wireless technologies are mainly used in office and mobile applications, in
situations where sensors and actuators are difficult to connect, also where a later instal-
lation would raise problems, for example in moving machines, and with data acquisition
in logistics. According to [56] WLAN (for long distances), Bluetooth and ZigBee (for
short distances) will be the successful future technologies. For very short distances NFC,
pushed by three global players, has a good chance to become established in the next years.
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Name Range Data Rate Energy
Consump-
tion

Standards Implemen-
tation

Radio Fre-
quency
Identification
(RFID)

2 mm –
80 m

small depending ISO/IEC
15961:2004,
ISO/IEC
15962:2004

late 60s

Near Field
Commu-
nication
(NFC)

few cm 106, 212,
424 kbit/s

very low ISO/IEC
18092:2004
or ECMA-340

Dec 2003

Bluetooth 10 cm –
400 m

2.2 Mbit/s low IEEE 802.15.1 1998

ZigBee 10 – 75 m 20, 40,
250 kbit/s

low IEEE 802.15.4 2004

Wireless
Local Area
Network
(WLAN)

30 –
300 m

up to
54 Mbit/s
(540 Mbit/s
in 2006)

high IEEE 802.11g,
802.11b,
802.11h, 802.11a,
(802.11n)

Standards
since 1997

Table 1.1: Survey of wireless technologies.

For RFID several business concepts will be developed, but the main application area will
probably be logistics. [56, 57]

1.3 Scenarios

The sensor definition and the information about wireless technologies will help us, while
considering the scenarios. This section deals with possible application areas for au-
tonomous sensor information processing (AIP). The outlined agent will be called AIP
agent or AIP module.

1.3.1 Automotive Applications

“Today in high-class cars there is more computing power than needed for sending the first
men to the moon.” [94] In modern cars several computers process input from numerous
sensors that measure great amounts of data to provide safety and comfort. Most of the
tasks are independent of each other and located in different places. That makes them well
suited for data processing in local AIP modules. If data is needed by other AIP moudles,
it can be communicated. Examples of such applications in the automobile fields are:
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• Automatic air conditioning system. Self-regulating air conditioning systems
have become quite common in middle class cars. The necessary data is provided
by sensors that could be read out by an AIP module. The AIP module would
observe the airing, heating, humidity and amount of dust in the air. Typical sensors
for this application are solar sensors, measuring the direction of incidence and the
radiation intensity of the sun, and sensors for temperature and humidity. Moreover
the passenger’s settings are part of the input. To guarantee an optimized climate
for every passenger, the sun’s radiation intensity will be determined for the driver’s
side and the passenger’s side as well. If the sun is so low that the driver could be
blinded, sun shades will be automatically lowered.

• Automatic windscreen wiper and lights. Rain sensors and solar sensors help
to control windshield wipers and lights automatically, allowing the driver to concen-
trate on the traffic. Thus comfort and safety of passengers and driver are increased.

• Swiveling headlight. Sensor data of speed, yaw angle and steering angle are
processed to anticipate the crucial part of the road ahead. The headlights are
turned in that direction [36].

• Display of tyre pressure. The driver is warned by an optic or acoustic signal,
when the tyre pressure has declined. The decrease of pressure can be detected by
measuring the tyre pressure directly and transmitting the value via radio or by
monitoring the wheel speed that changes with the radius of the tyre [42].

• Electronic Stability Program (ESP). The ESP was developed for holding the
car stable in situations of quick steering, for instance to avoid an obstacle. It
adapts the actual behaviour of the car to the drive input (up to a 150 times per
second) and prevents oversteering and understeering by decelerating single wheels
and controlling the overall speed. The car’s bearing is evaluated from the wheel
speed, the motor values and the cross acceleration (yaw angle). The steering-angle
sensor indicates the drive input. Beside the need of filtering and fusing the data,
another requirement turns out: The yaw angle is needed for the swiveling headlight
and for the ESP, and hence, if only one sensor is to be used, an exchange of sensor
data must be implemented. [34, 60, 36]

• Detection of Overfatigue. Many car accidents happen, when drivers are so tired
that their reactivity is heavily reduced. Often drivers do not realize or do not want
to realize, when their attention weakens. Hence, an unbiased computer system could
help monitoring the driver’s behaviour and alerting him by sound, when his driving
abilities are decreasing. Appropriate means could be a camera monitoring his eyes,
pressure sensors in the seat, the journey time, the course of speed, the steering
behaviour and maybe even body sensors taking pulse, blood pressure or breathing
rate. As normally a single one of these values is not significant and as false alarms
should be avoided, a fusion of sensor data is self-evident.
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1.3.2 Info Points: Orientation and Information

For the automobilist there are a lot of means for orientation and navigation in big cities,
namely road signs, road maps or navigation systems. It is more difficult for pedestrians.
Normally the support for pedestrians is rather poor, and especially tourists or disabled
people need to ask their way through. An answer to this problem could be info points set
up in the streets as part of the infrastructure to provide information to people walking
by. A mobile device, for instance a mobile phone, would receive the information. From
the wireless technologies, stated in section 1.2, RFID or NFC could be used, but then the
user had to “touch” the info point with his device, and in case of RFID the data would be
static. Better suited are Bluetooth or ZigBee with lower power consumption than WLAN
and with a transmission range of up to 30 m. The user then will get the information,
when he approaches the info point, and he does not even have to be aware of the info
point at all.
Beside orientation advice, the info points can also send information of special interest, for
instance about infrastructure, monuments and museums, history, city planning or public
transport. With the amount of information available, the necessity to filter the informa-
tion will grow and could be met by a preprocessing AIP module. The AIP module inside
the mobile device is connected with the interface of the chosen wireless technology. This
would send the filtered data to the main application for display.
For example if a tourist wants to see all famous monuments, he will be able to reduce the
incoming information to his particular interest by setting his device. Moreover he could
have special programs for more sophisticated wishes, that for example contain the infor-
mation to non-Catholic churches built before 1900. So depending on the chosen program
the info points could act like a tourist guide or like an orientation guide for the user. Data
that does not correspond with the presetting is filtered out.
Considering the orientation part, it could be interesting to network the info points, so that
the info points could arrange how the user is to be guided through the city. Moreover it
would be easier to update the info point information over a network.

1.3.3 Logistics

In times of hotly contested markets and shortening product life cycles, the competitor,
who is able to react quickly and flexibly to changes on the market will achieve a benefit.
Therefore in the future the factory production will have to be more flexible regarding to
individual customer preferences. This will increase the complexity of control and material
flow and would, if no automatic solution could be found, also mean an increase of logistic
and production costs, because today the automatic serial production is limited to inflexi-
ble, standardized processes. Changeable material flow structures still need the expensive
services of men and manual feed systems like lift trucks.
In [23, 95] these prospects are described along with an automated changeable material
flow structure using the RFID technology. We will alter the scenario to include sensor
data processing modules.
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In a factory along an assembly line or here an assembly network there are branching
points called waypoints and different points of action, at which parts of the products are
assembled, welded, drilled or checked. The parts are transported in containers that are
tagged with RFID tags. To ensure that a container reaches the predetermined point, it
has to be navigated through the assembly network. For this purpose the waypoints have
RFID readers that read out the IDs, for example Electronic Product Codes (EPC), stored
in the RFID tags of the containers passing by. Due to this information giving an overview
of the whereabouts of the containers, the containers are routed to the next branches or
to the next points of action.
Although information about all containers could be considered when a container is to be
routed through a waypoint, local information that shows, whether following line sections
are busy, should be sufficient. Hence, the assembly network can be divided into physical
or logical areas, so that each area could be supervised by an AIP module. When a con-
tainer is about to change the area, adjacent sensor data processing modules will have to
exchange information, but most of the decisions can be made locally.
The advantage of this decentral solution is the separation of concerns. Processing on
one central computer would lead to a more complex logic, increased communication and
would require higher computing power. These disadvantages are avoided by the use of
distributed AIP modules, which, by communicating with their neighbours only, guarantee
a fast routing through the network. The reliability of the distributed system is higher and
changes or extensions are easier implemented, because only AIP modules must be added
or exchanged locally.
Additionally the system could improve the routing by using learning algorithms. When
a container reaches its destination the time spent is taken and sent as feedback to the
different AIP modules that participated in the routing procedure. The modules test dif-
ferent strategies and compare the results.
Moreover the sensor data processing module could be connected with other types of sen-
sors, for example monitoring cameras recognizing accidents. So in dangerous situations
the whole system or parts of the system could be stopped automatically.

1.3.4 Smart Elderly Care Home

Worldwide the number of people older than 65 years will double from 1990 to 2025. In
Germany the proportion of people older than 60 years grew from 14% in 1990 to 24.1%
in 2001 and will reach 34.4% by 2030. The number of people needing care will grow from
2 millions today to 2.8 millions in 2020. [54, 55]
In a population that steadily ages, the care for the elderly and sick becomes more im-
portant, more expensive and some day unaffordable. Hence, new and financially feasible
concepts for the care are needed.
Considering these arguments computer-supported health monitoring of elderly or sick
people might be a solution. Naturally nobody likes to be watched, but the alternative
would not be better: Perpetuation of autonomy vs. intrusion into privacy. Such a com-
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puter system would be fed by sensor data that reports the behavior of the monitored
person, measures bodily functions or retrieves ambient conditions. Means of acquiring
the person’s behaviour are motion detectors, pressure sensors in furniture, heat-sensitive
or normal cameras, RFID tags, light barriers, scales and switches. They indicate, where
the person is (lies in bed, is moving in the kitchen), what she is doing (moving, sleeping,
watching TV) and what she has done or has not done (forgotten to take pills). Bodily
functions of interest are pulse, heartbeat, blood pressure and body temperature. [77]
Typically the situations are restricted to a single room or maybe two adjacent rooms and
hence can be handled locally. When the person is in the bathroom, data from the living
room is not needed, however, there are cases, where data from other sensors improve
the reliability e. g. when the person walks to an other room, the data from that room
confirms the change. Briefly there is a need to fuse data and the possibility of working
locally, even if in some cases the exchange of data is useful as seen in the room swap ex-
ample. The AIP module could therefore process data locally, thus fuse, filter and maybe
exchange data, and depending on rules decide, whether the application must be notified
of any changes. The rules should be formulated by application developers with medical
knowledge or could be learned by a supervised learning algorithm. Whether the system
should adapt its rules at runtime, is questionable, because the adaption could impair the
security of the system.
Any changes and special events like ”person goes to bed” should be logged by the system,
exceptional circumstances must be reported to the doctor, and in case of emergency there
must be a doctor who can reach and help the patient fast. But often it will be enough to
notify the monitored person, for example when she has forgotten to take her pills, or to
query her, whether anything has happened to her. Such notifications could be displayed
on the TV screen or spoken over loudspeakers.
In addition to the observation there could be some supporting applications that can be
found in so-called smart homes. Triggered by events doors could be opened or closed,
lights and heating could be adjusted. For example if the person goes to bed, the “night
program” is started that cools down the heating, turns off the lights and lowers the shut-
ters. Moreover the supervised person could have a remote control or alternatively a mobile
phone for starting programs like ”close all shutters” and for setting off an alarm by him-
self. For this purpose one of the wireless technologies could be used.
As this scenario realizes elderly care in a smart home, it is called ”Smart Elderly Care
Home”. It was implemented as a prototype for the AIP module (see chapter 5).

1.4 Requirements

After the examination of operational areas for the AIP module, a few requirements will
be drawn from the scenarios:

• Filtering. An obvious task of a module processing sensor data is filtering. In the
info point scenario the main task of the AIP module is to let only such information
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pass that meets the user’s criteria. In the elderly care scenario filtering is needed to
provide that the medical staff is only informed of alerts and important changes and
not burdened with irrelevant messages.

• Sensor data fusion. In applications, in which a software agent needs to perceive
and picture its environment on the basis of sensory data, it is often necessary to
fuse data to get a more accurate or more complete picture. We have seen in the au-
tomotive applications that the detection of overfatigue depends on multiple sensors.
A single sensor cannot describe the whole situation sufficiently. If for example the
driver’s steering seems uncontrolled, it could be that he is forced to do so because of
an obstacle or bad road conditions. But in combination with other sensors showing
his bearing or his eye size, the uncertainty about the situation can be reduced.
When data needs to be fused, we often deal with uncertainty, meaning that we have
uncertain knowledge about the situation, and we fuse data from different sources
to reduce the uncertainty, so that we are able to classify it. In 2.2 we will dwell on
uncertain knowledge and in 2.5 we will investigate how fusion can be implemented.

• Learning. There are two ways to apply learning algorithms in the scenarios. On
the one hand the AIP module could be trained, how to classify more complex situ-
ations, before it is started. On the other hand it could adapt itself at runtime.
In the elderly care scenario for example, when the user or the doctor is notified,
they can give feedback, whether the situation was rated correctly. Moreover in the
smart home part of the scenario the system can learn the behaviour of the user. If
the user usually turns on the TV set every day at eight o’clock to watch the news,
the system will be able to learn this behaviour, so that it turns on the TV itself or
reminds the user to do so.
In the logistics scenario the agent could try different routing strategies and get feed-
back, when the container reaches its destination. As the destination can be remote,
the feedback should be returned via a server providing the involved AIP modules
with the feedback.

• Classification. The filtering of sensor data is a classification problem. Data is
sorted into classes, and depending on the class it is processed. Fusion and learning
algorithms can support the classification.
The question is, which classification methods are necessary to meet the application’s
requirements. In the info point scenario plain criteria determine, whether data is
displayed on the mobile device. For simple cases like this uncomplicated rules are
sufficient for filtering the data.
In some cases data first needs to be fused, especially when higher level data is
to be sorted or when a situation needs to be estimated on the basis of uncertain
knowledge.
If the classification is so complex that the application developer is not able to specify
rules by himself, then learning algorithms could help. When test data is available,
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they can be used to train the system. Moreover, the system can adapt itself to the
requirements during runtime.

• Locality. In spite of ever faster computers a central computer reaches its limits,
when it has to read and process large amounts of raw data. Hence it is advisable, to
process or preprocess locally. This separation of concern makes the program logic
simpler and clearer and thus more reliable. Moreover local preprocessing diminishes
the amount of communication. In the smart elderly care home scenario and the
logistics scenario we have pointed out that most problems can be solved locally.
That is also true for the automotive scenario, where many tasks are independent of
each other, so that decisions can be made merely on locally provided sensor data.

• Communication. Although locality is given in all described scenarios, local areas
often cannot be encircled strictly. In the elderly care home scenario the different
rooms of the person’s flat are appropriate sections, but changing to an other can
be retraced better, when adjacent AIP modules are able to communicate. Another
motivation for enabling communication between AIP modules is the joint access to
sensors. In the automotive applications two applications need the yaw rate. The
second sensor can be spared when one AIP module has remote access to the sensor
of the other AIP module.

• Generic sensor interface. Because of the great variety of sensor types it is
necessary to provide a generic sensor interface. Every AIP module must allow
the connection to every sensor type – during initialization and preferably also at
runtime.

• Simple and generic management interface. The various scenarios clearly
showed the need for different means of data processing, but that not all of them
are applied in all cases. Since memory space may be limited it should be possible
to have an AIP module, which meets the requirements exactly, without wasting
resources with unnecessary tools. That could be achieved by placing a set of fixed
modules at the user’s disposal. More appropriate is a construction kit with a fixed
kernel, to which arbitrary tools can be attached. The application designer then can
tailor the module to his needs.
In order to initialize and manipulate these tools independent of the actual tool
instances, a generic management interface – that is the interface used by the appli-
cation above – is needed. Dependent on the demand the handling of this interface
must be kept simple.

The scenarios showed that many tasks can be solved by simple rules, especially in the
info point scenario and in the logistics scenario, that should be manageable by the appli-
cation designer. But also the automotive applications are not so complex that learning
algorithms have to be applied. And in the elderly care scenario, when using simple rules,
the control is more easily retained. Of course, when necessary the application developer
must use more sophisticated means like Bayesian networks or learning algorithms, but



CHAPTER 1. SCENARIOS AND REQUIREMENTS 15

they should not be used in every case, for their use requires a lot of preparation and
maintainance.
Because of the potential complexity and the task specific design of an AIP configuration
it is assumed, that one AIP module serves only one application. Though, of course, it is
conceivable that several applications jointly address one AIP module regarding it as kind
of a context server. Sections 2.7.1 and 3.1 take up this idea again, but in the implemen-
tation it is not taken into consideration (cf. chapter 4).



16 1.4. REQUIREMENTS

Summary

Based on the four scenarios, which point out several applications of AIP modules, we derived
requirements to be satisfied by AIP modules, which we will refer to in the sequel. In the next
chapter we shall describe some of these requirements in more detail to establish a base for in-
vestigating several architectures.



Chapter 2

Related Work

In this chapter we will discuss existing architectures and check them for the requirements stated
in section 1.4. But first we will describe a few tools and techniques that will be mentioned in the
analysis of the related architectures and of the AIP architecture in chapter 3.

Chapter 1 ended with the formulation of requirements for autonomous sensor information
processing (AIP). As explanation and in consideration of the architecture to be designed,
this chapter will study several tools and concepts of knowledge engineering. They include
reasoning tools – in our case rule engines and Bayesian networks –, knowledge-based sys-
tems, related concepts like ontology and context, and means for data processing, namely
fusion and learning algorithms. Finally an overview and evaluation of existing architec-
tures is given.

2.1 Rule Engines

When in 1960 Newell and Simon introduced the idea of a General Problem Solver [70],
the expectations about artificial intelligence rose very high. The machine was supposed
to simulate human problem solving by applying a set of rules. The project failed, but
from its ruins emerged in the 1970s the idea of an expert system, an advisor that supports
men in problem solving. Expert systems are no longer all-round geniuses but experts with
(human) knowledge in a restricted field. They were applied in business and medicine with
varying success.
Expert knowledge can be represented in various ways. Today most common is the use
of objects and rules. Here the objects represent the factual knowledge, while the rules
expand this knowledge and generate answers to the queries. These rules are simple IF-
THEN statements, as the ones well known from diverse programming languages. [20]
To be called an expert, the system must necessarily include a certain amount of knowledge.
For that reason one also speaks of knowledge based systems. For Giarratano and Riley
[20] a knowledge based system is a smaller system with rather flat knowledge that is not
an expert in a field and that is much easier to program. In general any system using a

17
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knowledge base is considered to be a knowledge based system. That definition includes
expert systems and will be used in the sequel.
As knowledge-based systems do not necessarily incorporate a set of rules, rule based
systems form a genuine subset of the knowledge-based systems. To interpret the rules an
additional control system containing a rule interpreter is required. We denote the rule
based system as whole also as rule engine and define:

A rule engine or rule-based system is a software that consists of:

• a knowledge base of facts

• a rule base, that is a set of IF-THEN-rules

• a control system with rule interpreter

The control system chooses the rules to be applied, either data-driven (forward
chaining) or goal-driven (backward chaining).

The terms forward chaining and backward chaining will be explained later.
The idea of providing a dynamic rule base and a dynamic knowledge base is certainly that
they are easily adaptable at runtime, that rules and facts can be removed or added. A rule
engine is a pluggable software component that separates the rules from the application
code.
Expert systems were basically designed for symbolic reasoning, and besides Prolog, the
best known language for artificial intelligence (besides Lisp), several special languages and
rule engines were developed. We will introduce a few of them in chapter 4. For the sake
of efficiency it is sometimes advisable to implement parts in procedural languages.

Forward Chaining A chain is defined as a sequence of inferences that lead from a
problem to its solution or rather from the facts to the conclusion. Forward chaining
means that such a chain is traversed from the facts toward the conclusion. The question
is what conclusion can be reasoned from given facts. Such data-driven inferences are also
termed bottom-up reasoning. They are applicable for planning, monitoring and control.
[20]
In the following example, inspired by the elderly care scenario, we have the rules:

• IF X has a low pulse AND X does not move AND X does not sleep

THEN raise alarm for X

• IF X has pulse Y AND Y < 40 THEN X has a low pulse

If the knowledge base just contains the facts that the monitored person, say her name
is Mrs Krause, does neither move nor sleep, nothing will happen, since neither condition
is satisfied entirely. But when we add the fact that Mrs Krause has a pulse of 38, the
second inference will lead to the conclusion that Mrs Krause has a low pulse. Then all of
the first rule’s conditions are met, and the consequence is fired, thus the alarm is raised
for Mrs Krause.
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Backward Chaining The idea of backward chaining is traversing the chain from a
hypothesis (or goal) to the facts. The hypothesis is fulfilled if all its conditions are
fulfilled. So the question whether the hypothesis is true is recursively substituted by the
question whether its conditions are true, until the facts are reached that are always true,
when they exist. If cycles are obviated, this leads to a depth-first traversal in an and-or-
tree made up of rules as inner nodes and facts as leafs.
Backward chaining rule engines are used for diagnoses, for example in expert systems.
The goal-driven procedure, starting at a high-level hypothesis and proceeding to lower-
level facts, is also called top-down reasoning. [20]
In the example, similar to the one above, we will use Prolog notation1, for Prolog is a
quasi-standard for backward chaining. Suppose, we have the following rules:

• alarm(X) :- lowpulse(X), not(moves(X)), not(sleeps(X)).

• lowpulse(X) :- haspulse(X, Y), Y < 40.

And the knowledge base contains the facts:

• haspulse(krause, 38).

• sleeps(krause).

Now, if we want to check the hypothesis that an alarm has to be raised (because Mrs.
Krause might be in a state of emergency), we will ask: alarm(krause).
In this case, the answer will be No. Truly, Mrs Krause’s pulse is less than 40 and therefore
low. She does not move either, because there is no such fact in the knowledge base. But
she is asleep, and we could add that the low pulse is ascribed to this fact.

2.2 Uncertain Reasoning

A software agent, that perceives its environments through sensors, has only a vague picture
of it. Due to the values provided by the sensors it can only make suppositions that are
not necessarily correct. So it only has uncertain knowledge at its disposal. Reasoning on
such knowledge is called uncertain reasoning.
An example for the usefulness of uncertain knowledge and uncertain reasoning can be
found in the elderly care scenario. Suppose, the system merely realizes, that the monitored
person has picked up his pillbox. For she was instructed to hold the pillbox, tagged with
RFID, close to a RFID reader, whenever taking a pill. Then the probable conclusion is

1Prolog rules (and facts) are Horn formulas. A Horn formula is a disjunction, in which at most one of
the literals is positive: b ∨ ¬a1 ∨ ... ∨ ¬an. In Prolog such a rule is written as an equivalent implication:
b ⇐ a1 ∧ ... ∧ an, but using :- instead of ⇐ and commas instead of ∧. Facts have no positive literal (b
is constant true).
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that the pill was taken, but it cannot be guaranteed. Therefore it would be useful to
represent the uncertainty by an estimated probability of, say, 5%.
The rule-based systems that were discussed in the previous section are quite inappropriate
to deal with uncertain knowledge. In [79] it is explained that their intrinsically positive
characteristics, namely locality, detachment and truth-functionality, contradicts uncertain
reasoning.
Other approaches like the Dempster-Shafer theory and the use of fuzzy logic, which also
were not particularly successful, are not described in this thesis. We refer to [79] and
address ourselves to the Bayes Theorem, which is the basis for probabilistic reasoning
in almost all modern AI systems, especially for Bayesian networks, which we deal with
subsequently.

2.2.1 Bayes Theorem

The Bayes’ rule is a basic theorem in the probabilistic theory and allows to determine the
conditional probability P (Y |X); given X, how probable is Y.

P (Y |X) =
P (X|Y ) · P (Y )

P (X)

Normally we are interested in a posteriori probabilities P (Y |X). We observe Y and want
to know the probability that X is the cause. To calculate the probability, the three terms
on the equation’s right hand side must be known, the a priori probability P (X|Y ) and
the unconditional probabilities P (X) and P (Y ). Often it is the case that these values are
on hand or that they can be estimated.
The standard example in [79, 38] is a medical diagnosis on the basis of a symptom. We
consider a similar example taken from the elderly care scenario. Suppose, we want to
know P (a|l), the probability for an emergency, given that the person has a low pulse.
From studies we know that an emergency is quite improbable with P (a) = 1/10000, that
a low pulse has the probability P (l) = 1/100 and that in case of emergency the person
has a low pulse with probability P (l|a) = 0.7. Then the a posteriori probability P (a|l) is
calculated as:

P (a|l) =
P (l|a) · P (a)

P (l)
=

0.7 · 0.0001

0.01
= 0.007

In spite of the 0.7 probability for a low pulse in case of emergency, the probability of an
emergency is very small, no matter that the pulse is low.
Even if the terms, which are needed for the calculation, can be often determined, it is
quite a disadvantage, that prior knowledge is required. Besides, to determine the values
is usually time-consuming and nontrivial.
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2.2.2 Bayesian Belief Network

A Bayesian belief network or simply Bayesian network like the one in figure 2.1 describes
the probability distribution of a set of variables by specifying conditional probabilities and
conditional independence assumptions. Before we go into detail, we define the conditional
independence as:

∀xi, yj, zk : P (X = xi|Y = yj, Z = zk) = P (X = xi|Z = zk)

Or shorter:
P (X|Y, Z) = P (X|Z)

It expresses that X is independent of Y, if Z is given.

heat.pills P(inf)
true true 0.01
true false 0.15
false true 0.12
false false 0.21

high temperature low pulse

pills takenheating

influenza RFID reader

Figure 2.1: Bayesian belief network.

In the network dependencies are visualized by arrows. For each variable represented by
a node, a table lists the dependencies. It specifies the probability distribution depending
on the values of the immediate predecessors. In figure 2.1 only one table is given, namely
for influenza, which depends on the logical values of heating and pills taken.
The simple example in this figure models a cut-out of the elderly care scenario. All
variables are supposed to have type boolean. heating is true, if the temperature was
properly adjusted. pills taken is true, if the person took her pills. Insufficient heating and
omitted intakes of pills can cause an influenza. When pills are taken, it will be detected
by the RFID reader. Effects of an influenza can be a high temperature or a low pulse.
Suppose, we want to know the probability P (i∧ l∧¬t∧ h∧¬p∧¬r) that the person has
an influenza (i), a low pulse (l), though a moderate temperature (¬t), that the heating
was alright (h), but the pills were not taken (¬p), and that the RFID reader has remained
silent (¬r). Because of the independence assumptions we can simplify:

P (i ∧ l ∧ ¬t ∧ h ∧ ¬p ∧ ¬r) = P (h) · P (¬p) · P (¬r|¬p) · P (i|h ∧ ¬p) · P (¬t|i) · P (l|i)



22 2.3. ONTOLOGIES

With this formula the probability can be calculated, since all probabilities on the right
hand side can be found in the tables. The probability for the influenza is given in figure
2.1 with: P (i|h ∧ ¬p) = 0.15.
In this case we only used information contained in the network, and we determined the
probability of an assignment including all variables. But usually there will be additional
knowledge, and we will be interested in the probability of particular values only. In the
elderly care scenario for instance, we would get values by the RFID reader, the body ther-
mometer and the pulse meter. Therefore we can consider RFID reader, high temperature
and low pulse as known evidence variables, whereas heating, pills taken and influenza
are unknown nonevidence variables. Moreover we can part the nonevidence variables
into query variables, the ones we are interested in, and hidden variables. If we want
to know the probability of an influenza, given a high temperature, a normal pulse and an
“OK” from the RFID reader, the query would be:

P (i|t = true ∧ l = false ∧ r = true) =
P (i, t,¬l, r)

P (t,¬l, r)
=

∑
h

∑
p P (h, p, i, t,¬l, r)

P (t,¬l, r)

=

∑
h

∑
p P (h) · P (p) · P (r|p) · P (i|h, p) · P (t|i) · P (¬l|i)

P (t,¬l, r)

Thus we loop over the possible values of the hidden variables and exploit the evidence
variables to calculate the probability of the query variable. When the probability of no
influenza P (¬i|t = true ∧ l = false ∧ r = true) is evaluated too, then the denominator
need not be calculated explicitly, because it is the same for both terms and follows from
the fact, that the probabilities of complementary events sum up to one.
The general case of probabilistic inference using Bayesian networks is known to be NP-
hard [38, 7]. In [79] a few algorithms are listed for exact and approximate inference in
Bayesian networks. Moreover, it is described how continuous variables can be handled
using probability distributions, or avoided by discretization. Considering our example,
pulse and temperature are such variables. They were discretized such that e. g. temper-
atures above a certain limit are considered high, and temperatures below are considered
normal.

2.3 Ontologies

Before the term “ontology” was introduced into computer science, it was only known as a
philosophical discipline which deals with the nature of being or the kinds of the existing
and which can be sourced to ancient times (Aristotle, ”Metaphysics” IV, 1) [21, 87].
In computer science an ontology forms the vocabulary of a knowledge domain and is used
to represent data. In the context of Semantic Web [2] ontologies became very popular for
establishing a common terminology between agents. Based on a shared ontology agents
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are able to exchange knowledge. According to [88] a widely accepted definition was stated
by Gruber [22]:

An ontology is a formal explicit specification of a shared conceptualization.

Nevertheless there are differing definitions, which shows that there is little agreement so
far. E. g., Swartout et al. [89] define:

An ontology is a hierarchically structured set of terms for describing a domain
that can be used as a skeletal foundation for a knowledge base.

Considering both definitions, an ontology can be regarded as a basis for a specialized
knowledge base, whose underlying concepts and structure can be shared. Often the
processability has a great influence to the structure. In order to exploit the informa-
tion inherent in an ontology, semantic reasoning is applied. And with the expressiveness
of an ontology language the complexity of the reasoning process increases rapidly. For
this reason different languages were developed in the context of Semantic Web.
RDF (Resource Description Framework) as the basis of the Semantic Web allows only for
simple ontologies, as it is intended to describe merely binary relations (properties) be-
tween resources and to provide semantics for generalization among properties and classes.
For further expressiveness the Web Ontology Language (OWL) [37] was developed. Ad-
vancing on the predecessors DAML and OIL and founded on the theoretical basis of
description logics, the language provides three levels of expressiveness, namely OWL Lite,
OWL DL and OWL Full with increasing expressive power and reasoning complexity. De-
pendent on the actual language type OWL provides further means to express relations
between classes. Among others these are disjointness, cardinalities and equality. [21, 37]
Quite common in use is OWL DL. Its basis is the description language SHIQ or rather
SHIN. Although reasoning on SHIQ is known to be ExpTime-complete, it normally behaves
quite well. According to [88] the “pathological cases” are quite artificial and occur rarely.
The Context Engine [17], which will be described in the following section, is an example
for an OWL-DL-based ontology.

2.4 Context Information

The term context is widely used in different meanings. Besides computer science it can
be found in various fields like archeology and contemporary art. Although the definitions
differ considerably, there is a common understanding that context surrounds the actual in-
teresting thing and might influence its signification. In the dictionary2 is is circumscribed
as:

• what comes before and after a word, phrase, statement, etc helping to
fix the meaning.

2“Oxford Advanced Learner’s Dictionary of Current English” [27]
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• circumstances in which an event occurs.

In computer science (also in linguistics) the term is known from formal language theory
in connection with context-sensitive grammars. For ten years the term has been using
in artificial intelligence and ubiquitous computing. In one of the first works Schilit and
Theimer [81] describe context-aware computing as the “ability of a mobile user’s appli-
cations to discover and react to changes in the environment they are situated in”. This
idea of context was refined in the following years. Dey [11] formulated a widely accepted
definition:

Context is any information that can be used to characterize the situation of
an entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user and
applications themselves.

The definition includes, that context is always associated with an entity and that it is
subjective to it. But still there are aspects, like time-dependency, not mentioned. In recent
works the notion of context became plainer and yet broader. Based on Henricksen’s [26]
and Krause’s [32] work Fuchs [17] stated the following characteristics:

• Context is a subset of the setting of use.

• Context is determined individually, but not mutually exclusive for each application.
Context depends on the entity and its current environment, but different entities
can have the same context partially.

• Context is always associated with at least one entity.

• Any type of information can be considered context information depending on the
application.

• Context information is time-dependant. In the automotive scenario the environment
and the context change permanently while driving, which effects for instance the air
conditioning system.

• Context information can be represented in many different ways.

• Context information can often not be obtained directly. Here directly obtainable
context is synonymous with information provided by sensors. But often such low-
level context is not sufficient, and it needs to be refined applying for example sensor
data fusion.

• Interpreting context information requires meta-information. The quality of context
information is determined by the means of its provision. For example, the quality
of a sensor can be given by its resolution and reliability.
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Modeling Approaches When for the first time context-awareness was explicitly named
as a desirable feature (e. g. [81]), the utilization of context information was usually re-
stricted to one application. The question of reusability or sharing of context was not
reflected. Also the representation of context played a minor role, since it always could be
adapted to the respective application. Only in the following years first approaches were
made to heave context onto a conceptual level.
An early approach comparatively is Dey’s “Architecture to Support Context-Aware
Applications” [10] that is to ease the employment of context information by providing
special context servers. Here multiple applications can use an infrastructure, which ob-
tains low level context from sensors, processes it and offers the results. In 2.7.1 we will
describe this architecture (as a related architecture) in detail.
A recent approach is Fuchs’s “Context Meta Model” [17], a modeling technique ori-
ented on the characteristics stated above. Here the focus is on how context data is actually
modeled and represented. As it is used in the AIP implementation (see chapter 4), we
will give a brief survey over the modeling technique and the so-called Context Engine
implementation.
The implementation of the Context Engine consists of a frontend for the semantic web
framework Jena, providing an interface for the Context Meta Model. The Context En-
gine uses a knowledge base with an underlying ontology. Ontology and knowledge can be
written using the modeling constructs provided by the Context Meta Model.
The basic modeling constructs for representing context are entity classes, datatype classes,
property classes, datavalue classes and quality classes. Entity classes and property classes
are comparable with entities and relationships of an entity relationship model. An entity
class represents a group of things, persons, places etc. with similar characteristics, a
property class a group of relationships between entities. Examples for entities are: sen-
sor, room, person, software agent. Examples for relationships are: contains, isUsedBy,
hasValues. (see also fig. 5.3)
A datatype class is the base construct for representing a (higher-level) type of data values
such as: temperature, location, pulse. It is based on datavalue classes that represent
simple data types like string or floating-point number. The datatype class location, for
instance, could be given by a string (like “kitchen”) or by two floating-point numbers
representing longitude and latitude.
Quality classes can be attached to property classes and provide meta-information about
them. If, for example, a room is supposed to contain some object, the property contain
could be specified by a quality class “certainty” for expressing the certainty of this asser-
tion.
Based on OWL DL the Context Meta Model also provides means to express specializa-
tion and equivalence. Classes can be subclasses of other classes or equivalent to them.
Moreover, rules can be stated in SWRL to transform or to derive data from available
information. For further details see [17].
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2.5 Sensor Data Fusion

Nowadays one of the biggest problems in designing new processors is the increasing emis-
sion of heat. One reason for the heating is that information is thrown away. Already in
1961 Rolf Landauer demonstrated that the energy dissipation of k · T · ln(2) is the lower
bound for a bit operation3, and therefore every deletion of information inevitably causes
heat dissipation [33].
But why do we destroy information? It is so that almost every logical or arithmetic op-
eration causes a loss of information (1 ∧ 0 yields more information than the result 0)
and that we are interested in the result, for we normally cannot grip all the information
inherent in the related problem. In short, all computing is nothing but lossy fusion of
information4.
On a higher level information fusion, especially sensor data fusion, is a very up-to-
date topic, because sensor data processing is vital in many ongoing research areas like
man-machine-communication and robotics. In all domains, in which the computer needs
to obtain environmental information by the use of multiple sensors, sensor data fusion is
applied, because a single sensor cannot provide the acquired depth of information [97].
Different from the impression that is received considering the low level example, sensor
data fusion does not have to be lossy. Below we will distinguish different ways of sensor
data fusion. But first let us give an overall definition:

Sensor data fusion means that data from different sources is combined to get
refined information about an observed environment.

The resulting information is “often abstract, generalized or summarized” [29], and, like
in the low level analogy, the amount of data is often reduced. How sensor data is fused,
depends on the application. There is always a purpose to be served, and therefore the
fusion process cannot be considered as an isolated system [29].
Instead of sensor data fusion the terms data fusion or simply sensor fusion are often used
and not distinguished.

2.5.1 Classification and Problems

We have seen so far an overall definition of sensor data fusion. Now we will classify
different types of sensor data fusion and mark a few problems that might occur.
Brooks and Iyengar [5] divide sensor data fusion into three classes:

3where k is Boltzmann’s constant of 1.38 · 10−23J/K, and T is the temperature of the environment
into which unwanted entropy will be expelled

4A way to reduce heat dissipation could be reversible computing [1]. Fredkin and Toffoli developed
the conservative logic and suggested reversible logical gates that conserve the signals. Signals should not
be created or destroyed [16].
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• Complimentary sensors act like pieces of a jigsaw puzzle. They do not overlap,
but form a more complete picture of the environment, when they are put together.
Their fusion is easy, because there is no conflicting information. In the logistics
scenario there is such a situation, when data about the track of a container is
exchanged. The data from the neighbouring AIP module only adds to the picture –
provided that the monitored areas are disjoint.

• Competitive sensors deliver equivalent information each. Due to the redundancy
potential fault and failures of single sensors can be tolerated. In automotive appli-
cations, for example in the Electronic Stability Program, failures can have serious
consequences. A configuration with three identical sensors can tolerate the failure
of one sensor.

• Cooperative sensors merge their data to derive information that could not be
provided by neither sensor alone. An example of cooperative sensing would be the
estimation of the driver’s state in the automotive scenario. If the monitored pupils
become smaller, it could be necessary to know the position of the sun as well to
determine, whether the person is sleepy or just blinded.

Although the complimentary fusion is probably a lot easier to handle than the competitive
fusion and the competitive fusion less difficult than cooperative fusion, there are main
problems, specified by Wu [97], that actually concern all types:

• Sensors might use different physical principles.

• Data is given in different formats.

• Data is refreshed in different intervals, or depending on the sensor automatically or
not automatically refreshed.

• The generated information may have different properties concerning resolution, ac-
curacy and reliability.

2.5.2 Approaches

In recent years several approaches have been made to implement information fusion. The
focus was on image fusion, which is beyond the scope of the AIP module, because the
amount of data requires specialized means for a fast processing. Nevertheless we will
describe image fusion in brief, before we change to the techniques more appropriate for
the AIP module.

Image Fusion The reason why image fusion is so popular is that image data is digitized
and can be represented by a matrix containing numbers. That is why image fusion is often
a subject of applied mathematics [13]. Van Genderen and Pohl [19] define:
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Image fusion is the combination of two or more different images to form a new
image by using a certain algorithm.

Application areas are medical imaging and remote sensing, e. g. with the merging of im-
age data from different observation satellites. Further information about image fusion in
general and its use in remote sensing, together with a survey of techniques can be found
in [73].

Rule-Based Fusion A simple and coarse way of sensor data fusion is achieved by using
a rule engine (see 2.1). All rule engines have a set of IF-THEN-rules that look like:

IF condition(data1, ..., datan) THEN consequence

Here we can consider rules as conditional functions that will fuse the values data1, ..., datan,
if they satisfy the condition. The consequence can be interpreted as the result of the fu-
sion.
Thus the rules control and execute the process, and it will not matter, if data is refreshed
in different intervals, since it can be stored in the rule engine’s knowledge base.

Bayesian Network It was already touched on in section 1.4 that sensor fusion often
comes along with uncertain data. Either already the initial values or at least the results
are uncertain. That is why a Bayesian network (see 2.2.2) could be applied.
Some of the problems stated above can be handled easily by a Bayesian network. Of
course, it is not concerned with the physical principles of the sensor or the data format –
that is part of the sensor interface –, but it can deal with data arriving at different times
by storing the values in its nodes, and also with differences due to the reliability. The
reliability can be modeled by a probability distribution (cf. 2.2.2).

2.6 Learning

Almost with the invention of the computer, the question arose, whether computers could
be programmed to be able to learn. Today there exist a lot of learning algorithms for
computers, but, even if progress is made, the computer is far from attaining human abil-
ities. The initial euphoria about artificial intelligence was based on successes in domains,
which seem to be tailored to computers, like chess. In chess there is only a rather small
number of objects, 64 squares and 32 chessmen. The rules are strict and accurately de-
fined. Therefore chess can be easily emulated by computers5. Meanwhile the best chess

5The first chess programs did not use learning algorithms at all, only fixed coded algorithms like alpha
beta pruning.
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programs are on par with the human world champion. But many tasks, which seem simple
compared to chess and which every child can handle in early life like face recognition, are
severe obstacles for computer programming, because they cannot be reduced to a handful
of accurate rules. [3]
In order to ease the task and to perform well, the development and employment of learn-
ing systems is normally problem-oriented and reduced to a restricted domain. Even so
the results surprise sometimes. E. g., due to learning systems computers are capable to
drive cars along roads, to recognize handwritings and spoken words [38].
Even though everybody is convinced to know what learning means, it is not so easy, to
give a definition. With respect to computers Mitchell [38] defined:

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E.

The task T of a chess learning program would be playing chess, its performance measure
P the percentage of games won against opponents. The training experience E would
consist of games against humans, other computers or itself. A learning system requires
in addition the specification of the type of knowledge to be learned, a representation for
this target knowledge and a learning mechanism.
To explain a learning chess program, we can go along the lines of [38] (checkers example).
The type of knowledge, that is to be learned, is a function ChooseMove that is to find the
best move from a set of legal moves. Its representation is a compromise between accuracy
and efficient computability. That is why the function that is learned by the system, is
only an approximation to the ideal ChooseMove. Analogous to [38] we choose a simple
function that rates a board state due to the weighted sum of board features, like the
number and type of pieces left on both sides. The learning mechanism’s task is to adapt
the weights.

Performance
System

Critic

Experiment
Generator

Generalizer

Action /
Result

Training examples

Hypothesis

New problem

Feedback

Figure 2.2: Learning program. [38]

In general a learning system is divided into four components, namely in the Performance
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System, the Critic, the Generalizer and the Experiment Generator (see figure 2.2 and
[38]). We consider these modules with regard to our chess example:

• The Performance System must solve the performance task, here playing chess
by applying the learned target function. It takes a new problem, in this case a new
game, and passes the game protocol as output to the Critic.

• The Critic evaluates each board state bi with Vtrain(bi) taking into consideration,
whether the game was won or lost and when in the game this position was reached.
The pairs < bi, Vtrain(bi) > are transmitted to the generalizer as training examples.

• The Generalizer fits the target function V̂ to the training examples. This is
frequently achieved using the least mean squares or LMS training rule, which de-
termines the weights to minimize the sum of the squared deviations from training
data

∑
<b,Vtrain(b)>

(Vtrain(b)− V̂ (b))2.

• The Experiment Generator generates a new problem for the Performance Sys-
tem, which might depend on the hypothesis about the target function V̂ . In chess
this could be a special position or just starting a new game.

These four modules also constitute a learning agent (see 2.3, [79]). However, here the
interactions with the outside world must be taken care of. In the case of chess the Per-
formance System’s output is directly evaluated by the Critic. In case of a robot the
Performance System initiates actions, like motions. These can only be evaluated, if there
is a feedback through sensors.

Performance
System

Critic

Experiment
Generator

Generalizer
Feedback

Hypothesis

New problem
Actuators

Sensors

EnvironmentAgent

changes

knowledge

Figure 2.3: Learning agent. [79]

An other example for a learning agent could be the AIP agent in the logistics scenario.
It could have an Experiment Generator providing different routing strategies and get
feedback, namely the required time, when the container reaches its destination. The
Generalizer in the AIP agent can learn a function that selects the next path depending
on the traffic with the objective to speed up the overall flow.
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As the destination can be remote, the feedback should be returned via a server providing
the involved AIP modules with the feedback.
In the smart elderly care home scenario there are two possibilities for using learning al-
gorithms. On the one hand a learning system could be trained prior to its use to classify
situations correctly. On the other hand the behaviour of the user could be learned to
start smart home applications automatically.
Considering the former possibility we possibly have a different type of learning. So far
the learning systems were unsupervised, meaning that they adapt themselves without
external interference. Supervised learning on the other hand is a technique for creating a
function from user-defined training data. One example algorithm is the nearest neighbour
algorithm.
Using the nearest neighbour algorithm [83] the learning system is trained before its
employment. Training instances and instances that are to be classified, are given as
vectors of attributes. After the training phase, new instances are rated like the nearest
training instance (or selectively like the majority of the d nearest training instances). In
order to measure the distance between instance vectors, the vector’s arguments have to
be real numbers. In the elderly care scenario, for example, an instance could be given as
a vector containing the attributes pulse (real number), body temperature (real number),
pills taken (boolean mapped to −1, 1) and state (sleeping → 0, sitting → 1, moving → 2,
etc.).
To reduce the time for the classification a binary decision tree is built up. For this the
vector space is partitioned by hyperplanes (each rectangular to one axis). This is done
recursively by dividing resulting partitions anew, until each training instance is separated
from all others. Here every hyperplane is mapped to a tree node representing a binary
decision, namely on which side an instance that is to be classified, is located.
To classify an instance means therefore to traverse the tree down to the leaf, which repre-
sents the cell of the instance. Unfortunately, due the partition into rectangular cells the
cell’s training instance is not necessarily the nearest training instance, so that, perhaps,
the neighbouring cells have to be considered as well.
Beside separating supervised and unsupervised algorithms other distinctions are custom-
ary. But, as we do not need any special learning algorithms in the subsequent chapters,
we go without further descriptions of algorithms and algorithm types and refer to the
books and articles mentioned in this chapter ([38], [79], [83]).

2.7 Related Architectures

The need to process sensor data arises again and again. Hence, it is surprising that there
exists hardly any literature describing architectures of frameworks for local sensor data
processing. In the fall of 2005 an extensive query led to only a few architectures that
satisfy just some of the requirements. We distinguish four types of architectures and
present one representative of each:

• The “Architecture to Support Context-Aware Applications” belongs to the con-
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text servers that extract sensor data, process it and offer the results as context
information.

• The “Policy Based Adaptive Services for Mobile Commerce” is a framework to
generate agents to gain and process context. In order to serve a higher-level
application it has to be adapted to the task. This is quite similar to our idea of
autonomous sensor information processing.

• The “Singularity Architecture” stands for an architecture that processes data from a
particular type of sensor only, here RFID events. Such architectures are usually
specialized for a single task and a destined type of application.

• “Motes” are little devices connected with sensors that transmit their data via radio
communication. They are used in sensing networks pushing all the data to a single
data sink, where it is processed. We sort them to the group of means for centralized
data processing.

In the following sections these architectures will be presented. Each of the sections will
be concluded by an evaluation based on the requirements stated in chapter 1.

2.7.1 An Architecture to Support Context-Aware Applications

In section 2.4 Dey’s [10] architecture was briefly mentioned as a step towards a new way
of handling context. Context should be reusable and shareable by several applications.
For this uniform access must be provided. In order to ease the use of (additional) context
in existing or new software, the architecture provides means to treat context similar to
user input.
This architecture belongs to a type of software that is normally called context server.
Such a server’s task is quite similar to the one of the AIP module. It has to collect and
process sensor data and it offers the refined results to applications. We will describe and
discuss this architecture as a representative for all context servers.
As shown in figure 2.4 the architecture – in other papers [17] also referred to as toolkit –
distinguishes Widgets, Servers and Interpreters. All components can run on different
computers and have the same means for communication, as they are all subclasses of the
so-called BaseObject that provides the methods for the communication. Widgets encap-
sulate the sensors, that deliver the context information, and offer the data via polling or
subscribing. They are defined by their attributes and callbacks. Although applications
can retrieve information directly from such low level Widgets, they should request Servers
that are extended Widgets. Servers combine the information of several Widgets and offer
the compound context information to any application or component. The subscribing
application or component can specify the callback event, the Widget attributes of interest
and conditions under which the data is returned. By these options the information is fil-
tered. Interpreters are responsible for the interpretation of context and can be consulted
by any Widget or application. Every Interpreter offers a function interpretData() that
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Interpreter Interpreter

Widget Widget

Application

Server

Sensor Sensor

Figure 2.4: Architecture To Support Context-Aware Applications. Relationship between
applications and the context architecture. Arrows indicate data flow. [10]

takes specified attributes, interprets them and returns the results.

Review It is obvious that a context server providing data for several applications must
be more general than the AIP module serving only a single application. In this connection
it is not only interesting to see in how far this architecture fulfills the requirements of
section 1.4, but also in how far the AIP module can function as context server.
Because of its powerful processing tools which can take over of a substantial share of data
processing, the AIP module is more destined for special tasks. But it can be configured
as context server as well, thus combining Widget and Server from Dey’s architecture. In
any case it makes sense to make the interface available to various applications. Then
also several components of the same system could be notified by the AIP module, e. g. a
backup data base in addition to the actual receiver.
The rest of this paragraph analyzes which requirements are met by Dey’s architecture:

• Means for processing. As the Widgets only retrieve data from sensors and Servers
only aggregate the information, the main processing task lies in the Interpreters.
Their implementations are not restricted, and so they can use a rule engine for
instance or more sophisticated tools to interpret the input.
Admittedly the architecture’s philosophy would be violated, when an Interpreter
stored data or when it were specialized for a certain Widget, such that it could no
longer be used by all Widgets in the same way. Moreover, the reusability would be
impaired. To allow demanding data processing by Interpreters would mean, that
several of the architecture’s principals had to be given up.

• Communication. Via communication all components are accessible. Remote sen-
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sors can be used.

• Locality. Since every component can communicate with any other and since this
communication is crucial for any useful application, one cannot talk of local process-
ing.

• Generic interfaces. The implementation of the component specific methods is
unrestricted. The number of the methods’ parameters and their types can be set
by the application designer. Hence, the entire architecture is generic.

We can say that with some restrictions this design can be used as an architecture for sensor
data preprocessing. One handicap is, that the Interpreters must be called explicitly and
that they should use only data transferred with this call. Therefore data is neither stored
nor shared, so that the employment of sophisticated processing tools is quite useless.
Moreover with the lack of local processing, one of the main AIP principles is infringed.

2.7.2 Policy Based Adaptive Services for Mobile Commerce

In mobile commerce it is important to ease the access to mobile services to improve their
acceptance. Presetting should be simple or avoided entirely. Therefore in [78] it is sug-
gested that context information is used to do the presetting automatically. The user types
in his preferences once, for example that he wants low cost connections at any rate, and
every time when a service is used the preferences are taken as context information for
decision-making.
The architecture consists of agents that contain one to four (different) modules (cf. fig-
ure 2.5), namely the Policy Decision Point (consisting of the Pattern Matcher and the
Agenda), the Policy Enforcement Point, the Policies and the Context module. These
modules form the parts of a rule engine: Policy Decision Point and Policy Enforcement
Point together represent a rule interpreter, Policies is the rule base, and finally Context
provides the data. A priori every agent can have any subset of these four modules.
The decision-making process is done by such a split rule engine. At the Policy Decision
Point based on the context information, the Pattern Matcher chooses the rule to be fired
and adds it to the Agenda. At the Policy Enforcement Point the rule is fired. If the parts
of the rule engine are located on different agents, the data has to be transmitted between
them.
The architecture distinguishes three main agent types, namely services, mobile devices
and sensors (cf. figure 2.6), that are distributed all over the network. Services and mobile
devices can contain all four module types, whereas the sensors only provide context in-
formation. To reduce unnecessary transmissions the context is kept locally, and it is sent
over the network only on request.
The prototype based on this architecture is a service for downloading movie trailers. The
context information consists of technical information and user preferences. Quality, speed
and cost are set by the user. Screen resolution, supported video encodings and available
network interfaces are part of the mobile device that is used. Furthermore there is a
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device capabilities and available services is one key component for such systems. 

Policy 

Enforcement 

Point

Context

Policies

Policy Decision Point

Pattern Matcher

Agenda

Fig. 1. The core elements of the adaptation architecture 

Policies are rules that can be seen as sophisticated conditional IF – THEN statements 

that define how the system reacts in a specific context. The policy decision point

(PDP) which applies policies to context information consists of a pattern matcher and 

an agenda. The policy decision point works in cycles and in every cycle a policy can 

be fired. As the first step in a cycle the pattern matcher compares all policies with the 

context information and generates an unordered list of policies that should be acti-

vated in the current cycle. These and the policies which have been activated in a pre-

vious cycle form a conflict set. The agenda is an ordered list of activated policies 

which is generated by a conflict resolution algorithm from the conflict set. As the 

next step the first policy of the agenda will be fired and the action part (Policy En-

forcement Point) will be executed which could lead to a change of the context infor-

mation or to any other action that influences the surrounding system. 

4.3   Context 

As already mentioned in the section about related work, different approaches for 

acquiring, describing, representing, structuring and querying context are currently 

discussed in research. Some projects try to establish generic ontologies for the de-

scription of context information in a homogenous way. This approach is not feasible 

because it is not possible to describe all aspects of the whole world and often adapta-

tions are interested in different aspects of an entity. Furthermore some people think 

that structuring context information, e.g., into high-, middle- and low-level is a suit-

able solution for managing complex context information.  

We believe that a concentration on the basic results that the fields of artificial intel-

ligence and semantic web have produced in the last decades is the most suitable solu-

tion for describing context information. Here context is always a triple consisting of a 

resource, a property and a literal. We use the terminology of the Resource Descrip-

tion Framework (RDF) because we use this standard to describe context information 

in a way that is understandable by policy decision points which again are often based 

on rule engines. We think that the functionalities that are given by RDF are sufficient 

Figure 2.5: Policy-Based Adaptive Services. Basic modules of agents. [78]

RDF as well as templates and RDF schema it is easily possible to transform them 

with XSL transformations (XSLT). 

4.5   Physical View 

The physical view addresses the distribution of the core elements of our basic adapta-

tion architecture to different entities in the network such as sensors, services that are 

provided by servers, or mobile devices.  
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Fig. 3. Entities in the physical view 

Figure 3 shows the three different kinds of entities in our physical architecture: 

services, mobile devices and sensors whereby every entity could exists 0..n times. 

Every entity is connected with the network so that each entity could talk with every 

other entity. A sensor could be used to acquire context information such as weather, 

noise, social contexts or proximity of augmented objects or people. A server provides 

services that could be directly or indirectly used by the user. A mobile device is for 

instance a mobile phone, Smartphone or PDA. Services and mobile devices could 

include a policy decision point and a policy enforcement point. Furthermore they can 

provide and manage context information and policies. Every service or mobile device 

could integrate all of the mentioned core elements or just three, two or one of them. 

4.6   Communication Middleware

The context information is based on sensors, databases or files which can be dis-

tributed over the whole system. It is not feasible to have one central physical database 

Figure 2.6: Policy-Based Adaptive Services. Agent types. [78]

selection of different network agents and video agents distributed over the network that
provide context information about their services. A decision agent in the network chooses
rules depending on the complete context, and the mobile device agent executes these rules.
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Review Although this architecture has a different focus and is adapted to the require-
ments of mobile commerce, it roughly fits to our idea of autonomous sensor data process-
ing. The low-level context information in this architecture is provided by sensors according
to our extended sensor definition, and it is processed to serve an application on a higher
level. Therefore we can investigate the architecture and see in how far our requirements
are satisfied:

• Filtering, fusion and learning. The context information is processed by a rule
engine. As stated in section 2.1, a rule engine allows filtering and simple data fusion.
Learning of any kind is not supported.

• Locality and communication. Since in this case the emphasis is put on distri-
bution and since module to module communication is essential, locality is present
only in a marginal way. However, to keep communication costs low care was taken
to process data locally as far as possible. For that purpose the rule engine was split
up in its parts. In the prototype, for instance, only the rules have to be sent to the
mobile device and not the context on the basis of which the rules were selected.

• Generic interfaces. The sensor entity of the architecture is not explicitly de-
scribed. There is no framework supporting the connection of sensors. But in any
case, seen from outside, the sensors behave the same way. As all context information
is represented by RDF (Resource Description Framework), all sensor entities that
do nothing but gaining context and sending it, must convert the sensor data into
RDF. Equally there is no description how the user interface can be connected with
the mobile device entity.

• Rules and uncertainty. Uncertain sensor data or uncertain knowledge in general
is not considered. All decision-making is done by a rule engine.

This architecture can be seen as a set of rule engines with possibly shared knowledge
and rules. The normal use-case will be that the sensor information contemplable for the
processing is widespread, whereas we considered scenarios, in which local processing is
useful and possible. Therefore this architecture is not appropriate for our aims. Moreover,
beyond the lack of locality, the means of processing are restricted to rule engines, and
there are no hints for possible extensions.

2.7.3 Singularity Architecture

Since new application areas are researched for the RFID technology and since it gains
ground especially in logistics, there is an increased need for tools and frameworks. Re-
tailing chain store giants like Metro and Walmart investigate in this technology and it is
expected that competitors will follow.
Many RFID systems, especially in trade, use the Electronic Product Code (EPC) that
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replaces the Universal Product Code (UPC) barcode system. In contrast to the UPC
system every product gets its own specific identity number, the 96 bit long Global Trade
Item Number (GTIN), which is contained in the EPC tag. The EPC system is managed
by EPCGlobal Inc. [59].
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Figure 2.7: Singularity architecture [75].

The Singularity architecture [75, 76] is a solution for the application of RFID and EPC in
supply chains. All levels are included starting at the lower end with the RFID scanners
reading the tags, up to the distribution of processed data inside the enterprise and even
further. The architecture consists of the EPC Information Service (EPC-IS) connected
to the Enterprise Service Bus and a three layer middleware. Modules of one layer are
notified about events by the modules of the layer immediately below.
At the lowest level the Interrogator Agents act as drivers for the RFID readers, which can
be of arbitrary type or brand. Several of these Interrogator Agents can be connected to
a Device Manager on the layer above, who is listening to their Sensor Events. The De-
vice Manager represents the first filter, it builds Reader Events from one or more Sensor
Events and sends them to the Event Message Space. Reader Events of different Device
Managers can belong to a Logical Sensor Event. On the next level the Event Process
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Manager subscribes to that (Logical) Sensor Events it wants to monitor and is notified,
when these events are available in the Event Message Space. It uses a rule engine to filter
events and to map them to higher level events, called Business Events. These Business
Events then leave the middleware as Application Level Events that are sent to the clients,
namely the EPC-IS instances. When additional data from the company network is needed
to handle the EPC events, it will be linked to the EPC-IS. Eventually the EPC events
will be available via the Enterprise Service Bus inside the company and via the EPCglobal
Network to business partners.
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Figure 2.8: Singularity middleware [76].

As an alternative the architecture can be viewed without EPC-IS clients. So an arbitrary
application can use the results offered by the Process Manager. Moreover in order to in-
crease the feasibility, the Process Manager’s rule engine can process the Business Events,
its (intermediate) results, anew together with other events from the outside, which, how-
ever, are not specified in the paper.
The Graphical Middleware Viewer in figure 2.8 is used for the configuration and ad-
ministration of the middleware. The Device Manager provides an interface that can be
used to configure the Interrogator Agents. Besides the rule engine of the Process Man-
ager must be provided with rules. And physical information like IP addresses must be set.

Review This architecture is tailored for RFID readers as only – or at least as essential –
sensors and is not meant to fulfill all requirements. Nevertheless it will be interesting to
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see, which requirements are met:

• Filtering, fusion and learning. By selecting Sensor Events for the (Logical)
Reader Events, filtering takes place in the Device Managers. In the Process Manager
a rule engine is used to map the low level Reader Events to Business Events. The
rule engine allows filtering and simple data fusion. Learning is not possible.

• Communication. Due to the different layers “vertical” communication between
Device Manager and Process Manager and between Process Manager and EPC-IS
instances is necessary. Direct communication between modules of the same layer is
not possible. Sensor Events of Interrogator Agents first come together in the Device
Manager, Reader Events of Device Managers not before the Process Manager.

• Locality. Instances of the middleware preprocess RFID data locally and serve
applications on a higher level, namely the EPC Information Services. Thus local
processing is granted.

• Generic interfaces. For the configuration and administration of middleware the
Graphical Middleware Viewer is used. It provides a generic interface to configure
all middleware components, especially the rule engine, the Interrogater Agents and
eventually the RFID readers.

• Rules and uncertainty. As mentioned above the middleware is not able to deal
with uncertainty and does not provide any means for learning and adaptation. It
uses a rule engine for the processing.

We note that this architecture possesses a generic interface and that it obeys to the
principal of locality. For our purposes the restriction to RFID or EPC data is a drawback,
even if other sensors can be implemented as context sources. How this is achieved is not
specified. A further disadvantage is the restriction to a rule engine as the only processing
unit and the missing extensibility. Although rule engines are quite powerful, there are
cases where additional tools could be used more efficiently.

2.7.4 Motes

For the “Habitat Monitoring on Great Duck Island” [44] Motes (developed by UC Berke-
ley) are used to collect data from sensors distributed over the habitat. Motes are small
devices, powered by batteries, that are to read data from sensors and send it to the Bases-
tation. Together they build a multi-hop network, i. e. they can forward messages from
other Motes towards a gateway, which finally transfers them to the Basestation via the
Transit Network (see figure 2.9).
In this scenario all sensor data is stored in a database which makes it available via the
internet. It is not further processed. In general sensor data collected this way would
be processed by a central computer like the Basestation forming a single data sink – in
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2.2.3 Sensor network longevity
Sensor networks that run for 9 months from non-rechargeable

power sources would have significant audiences today. Al-
though ecological studies at GDI span multiple field seasons,
individual field seasons typically vary from 9 to 12 months.
Seasonal changes as well as the plants and animals of interest
determine their durations.

2.2.4 Operating off-the-grid
Every level of the network must operate with bounded en-

ergy supplies. Although renewable energy, for example solar
power, may be available at some locations, disconnected op-
eration remains a possibility. GDI has sufficient solar power
to run many elements of the application 24x7 with low prob-
abilities of service interruptions due to power loss.

2.2.5 Management at-a-distance
The remoteness of the field sites requires the ability to

monitor and manage sensor networks over the Internet. Al-
though personnel may be on site for a few months each sum-
mer, the goal is zero on-site presence for maintenance and
administration during the field season, except for installa-
tion and removal of nodes.

2.2.6 Inconspicuous operation
Habitat monitoring infrastructure must be inconspicuous.

It should not disrupt the natural processes or behaviors un-
der study. Removing human presence from the study areas
both eliminates a source of error and variation in data col-
lection, as well as a significant source of disturbance.

2.2.7 System behavior
From both a systems and end-user perspective, it is criti-

cal that sensor networks exhibit stable, predictable, and re-
peatable behavior whenever possible. An unpredictable sys-
tem is difficult to debug and maintain. More importantly,
predictability is essential in developing trust in these new
technologies for life scientists.

2.2.8 In-situ interactions
Although the majority of interactions with the sensor net-

works are expected to be via the Internet, local interactions
are required during initial deployment, during maintenance
tasks, as well as during on-site visits. PDAs serve an impor-
tant role in assisting with these tasks. They may directly
query a sensor, adjust operational parameters, or simply as-
sist in locating devices.

2.2.9 Sensors and sampling
For our particular applications, the ability to sense light,

temperature, infrared, relative humidity, and barometric pres-
sure provide an essential set of useful measurements. The
ability to sense additional phenomena, such as accelera-
tion/vibration, weight, chemical vapors, gas concentrations,
pH, and noise levels would augment them.

2.2.10 Data archiving
Archiving sensor readings for off-line data mining and

analysis is essential. The reliable offloading of sensor logs to
databases in the wired, powered infrastructure is an essential
capability. The desire to interactively “drill-down” and ex-
plore individual sensors, or a subset of sensors, in near real-
time complement log-based studies. In this mode of opera-

Figure 1: System architecture for habitat monitor-

ing

tion, the timely delivery of fresh sensor data is key. Lastly,
nodal data summaries and periodic health-and-status mon-
itoring requires timely delivery.

3. SYSTEM ARCHITECTURE
We now describe the system architecture, functionality

of individual components and how they operate together.
We explain how they address the requirements set forth in
Section 2.

We developed a tiered architecture. The lowest level con-
sists of the sensor nodes that perform general purpose com-
puting and networking in addition to application-specific
sensing. The sensor nodes may be deployed in dense patches
that are widely separated. The sensor nodes transmit their
data through the sensor network to the sensor network gate-

way. The gateway is responsible for transmitting sensor
data from the sensor patch through a local transit network

to the remote base station that provides WAN connectivity
and data logging. The base station connects to database
replicas across the internet. Finally, the data is displayed
to scientists through a user interface. Mobile devices, which
we refer to as the gizmo, may interact with any of the net-
works – whether it is used in the field or across the world
connected to a database replica. The full architecture is
depicted in Figure 1.

The lowest level of the sensing application is provided by
autonomous sensor nodes. These small, battery-powered
devices are placed in areas of interest. Each sensor node
collects environmental data primarily about its immediate
surroundings. Because it is placed close to the phenomenon
of interest, the sensors can often be built using small and in-
expensive individual sensors. High spatial resolution can be
achieved through dense deployment of sensor nodes. Com-
pared with traditional approaches, which use a few high
quality sensors with sophisticated signal processing, this ar-
chitecture provides higher robustness against occlusions and
component failures.

The computational module is a programmable unit that
provides computation, storage, and bidirectional communi-
cation with other nodes in the system. The computational
module interfaces with the analog and digital sensors on the
sensor module, performs basic signal processing (e.g., simple

Figure 2.9: System architecture for habitat monitoring [35].

contrast to all the Motes being data sources. One example is the implementation of the
elderly care scenario (see 1.3.4) with Motes, which is described in [77].

Review As Motes are not concerned with data processing, we will not examine the
requirements in detail. Furthermore it is obvious that locality is not given, and therefore
we consider this architecture only as an example for how data can be retrieved, but which
contradicts the idea of the AIP module. Its use is appropriate for the collection of data,
but not for the preprocessing in order to disburden the main application.
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Summary

In order to establish a basis for the examination of architectures and their implementations,
terms and tools were explained. At the end of this chapter related architectures were discussed,
which we will be followed by the AIP architecture in chapter 3.
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Chapter 3

Architecture

This chapter introduces a new architecture for autonomous (sensor) information processing
(AIP). It is called AIP architecture. Based on the requirements from chapter 1 and the tech-
niques described in chapter 2 a design rationale is framed that establishes a basis on which the
architecture is developed.

This chapter describes the AIP architecture. It starts with a design rationale that estab-
lishes a basis for further reasoning in the succeeding sections. For this the requirements
stated in 1.4 and the result of chapter 2 are consulted. After the general survey (3.2)
the layers of the architecture and the inter-AIP-communication are described in separate
sections, followed by an evaluation and further requirements concerning the software to
choose.

3.1 Design Rationale

This section explains our approach to designing the AIP architecture. Besides the require-
ments stated in section 1.4, the tools and concepts for knowledge engineering, described
in chapter 2, form the basis for our considerations.
The main task of an AIP module is getting raw data from arbitrary sensors and processing
it for an application (cf. 0.1). Therefore a generic sensor interface is needed that can
handle all kinds of sensors and that provides the module with standardized information.
As we assume that an AIP module is used by a single application (cf. 1.4), it is reasonable
to let the AIP module be initialized and manipulated by this application. The necessary
interface we call management interface. Its task is to receive commands from the appli-
cation and also to provide it with processed information.
In 1.4 we found out, that a generic AIP module to which arbitrary tools can be attached,
is preferable to a set of fixed AIP modules. Different Implementations of rule engines,
Bayesian networks, reasoners, learning components and other tools thus can be connected
to the AIP module. The advantage is, that for any application and hardware the optimal
software can be chosen. E. g. in the info point scenario, where the AIP module is located
in a mobile phone, saving memory space may be important, whilst in the automobile

43
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performance is emphasized.
The decision to allow the use of arbitrary tools has the following consequences:

• For the initialization and manipulation of the processing tools, the application must
have access to them via the management interface. For better exchangeability of
tools the management interface should be generic.

• Since data must be available globally, it is advisable to install a central knowl-
edge base to which all tools have access and into which all (sensor) data is
written. Allowing direct exchange of processing tools is hardly feasible and would
unnecessarily complicate program logic and consistent data storing.

To provide the connected tools with data, the central knowledge base should be able to
notify the processing tools of any new data. Nevertheless the processing tools need to
have active access to the knowledge as well. On the one hand they must write back results
and on the other they can read old data, that is no longer kept in their local memory.
The knowledge base must be well structured to ease the input of data as well as to improve
access to the bulk of sensor data, application data and processed data. For that purpose
two concepts were introduced in chapter 2, ontology and context.
In order to open and close sensor connections, it must be possible to send sensor requests.
For convenience it is advisable to allow polling as well as notification methods. The latter
case is useful, for sensor data will be sent to the knowledge base and forwarded to the
processing tools automatically.
These sensor requests as well as the notifications for the application, should be sent either
by all tools or by a single tool. When all tools can write to the interface simultaneously,
there are no means to coordinate the actions and concurrent requests and messages may
arrive at the interface. Therefore one should specify one tool for this purpose. Of all
the tools considered the rule engine probably is the best suited one, because it is quite
conveniently controlled. Sensor requests and notifications from other tools can then easily
be written into the knowledge base, whereupon the rule engine will forward them.
A further requirement from section 1.4 is the inter-AIP-communication. It is needed to
exchange data in case of shared sensors or shared situations. One example is the “changing
to an other room” in the elderly care scenario.
Before proceeding to the description of the architecture, we will summarize the results of
our considerations:

• There should be one central knowledge base that underlies an ontology and that
preserves correlations between pieces of data. Associated context data must be
easily available, so that data can be identified or augmented with it.

• Various processing tools must be integrable. They need to have access to the knowl-
edge base and must be notified of any new data. That puts demands to the knowl-
edge base’s interface.

• For the maintenance of knowledge base and processing tools a generic interface
should be provided. The same should be true for the sensors.
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• There must be means to query the sensors and to notify the application about events
or (intermediate) results. A rule engine seems to fit best, because it can be handled
most easily.

• Communication between AIP modules for the exchange of (sensor) data is required.

The use of a central knowledge base, shared by all other components, suggests a star
shaped representation (star topology) as shown in figure 3.1. The knowledge base is
placed in the center surrounded by the processing tools, the interfaces and the communi-
cation module. These exterior elements supply or retrieve data.

knowledge baserule engine

management
interface

sensor
interface

communication

Bayesian
network

any tool

Figure 3.1: AIP architecture. Star topology.

This design has the advantage, that it displays the main data streams and highlights the
knowledge base as central link. The rule engine’s special role somewhat mars this design.
That is avoided, when rule engine and knowledge base are considered as compound –
as indicated in figure 3.1. A disadvantage is, that the interfaces are diminished in their
importance and that this design neglects manipulations of the processing tools by the
management interface.
An alternative to the star topology is a three layer model (see 3.2). The knowledge base is
located in the middle layer, surrounded by the processing tools. The interface layers are
over (management layer) and below (sensor layer) it. Compared with the star topology
the interfaces now get an appropriate weight and are not leveled amongst the processing
tools. Their fundamental function, the interaction with sensors and application, is em-
phasized and separated from processing. Moreover, the presentation can be extended by
the levels of the physical sensors and of the application.
This design has the disadvantage, that inter-AIP-communication is not marked off. Hence
a third design with four submodules can be thought of, where communication is a sub-
module of its own. But since in the case of local processing the relevance of inter-AIP-
communication is rather low, we will stay with the three layer architecture. In the next
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Application

Management Interface

Rule Preprocessor Data Preprocessor

Rule Engine Knowledge Base

Data Supplier

Sensor Manager

Tool Preprocessor

Any Tool

Data Reader

Communication

Sensor Interface

Sensor

Management Layer

Processing Layer

Sensor Layer

Figure 3.2: AIP architecture. Three-layer-design.

section we will give an overview of the AIP architecture and examine in which layer
communication should be placed.

3.2 General Survey

The AIP-module is used for the autonomous preprocessing of sensor data. After the
AIP-module is initialized, sensor data can be read automatically and processed with var-
ious tools. The results are forwarded as messages to the main application. Moreover,
AIP modules can communicate with each other to exchange (sensor) data (inter-AIP-
communication).
As mentioned and indicated by the dashed lines in figure 3.2, the AIP architecture con-
sists of three layers, namely the sensor layer, the processing layer and the management
layer. Sensors are connected to the sensor layer, which retrieves their data and makes
it available by sending it to the knowledge base of the processing layer. There several
tools extract the data, process it and write the results back to the knowledge base. One
designated tool, a rule engine, can trigger two types of actions outside of the processing
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layer, namely sensor requests and messages to the application via the management layer.
The management layer will also receive input from the application, after the initialization
mainly for registering new sensors and adapting the processing tools, e.g. by adding fur-
ther rules to the rule engine or new facts to the knowledge base.
Inter-AIP-communication can either be associated with the sensor layer or with the
processing layer, depending on where the transmission data is taken from. If just raw
data is to be transmitted, the communication module can be viewed as part of the sensor
layer. If in addition high level data is required, the knowledge base in the processing layer
must be accessed, which demands greater effort.

3.3 Sensor Layer

The sensor layer is used to connect sensors to the AIP and to provide data to the knowl-
edge base of the processing layer. The sensor layer consists of the sensor interface, the
sensor manager and the data supplier.
The sensor interface needs to be generic so that every sensor consistent with the ex-
tended definition of 1.1 can be used. Due to the variety of sensor types and manufacturers
it is impossible to provide drivers or adapters for all sensors on the market.
The sensor interface must allow for the pull mode (or polling mode) and for the push
mode:

• In the pull mode or polling mode the sensor sends the last or actual measured
value on request. Normally the communication is synchronous. The requesting
thread waits until the sensor returns the value. In this case the value is not returned
to the caller, namely the rule engine, but to the knowledge base that runs in its own
thread. Call and return are decoupled and therefore the communication is not
synchronous.

• For the push mode the sensor must provide a subscription mechanism. Subscribing
to a sensor means that the subscriber is notified, whenever a sensor value is mea-
sured. The subscriber is sometimes called listener or event handler, as he listens to
and handles notification events. The subscriber’s function responding to the event
is referred to as callback function.

The only subscriber to the sensors is the data supplier who forwards sensor data to the
knowledge base in the processing layer. It is the only upward interface and it also receives
the sensor requests (push or pull).
In sensor requests the relevant sensor can be specified directly by its ID or URL or by its
properties, e. g. by the quantity it measures and additional context information. In both
cases the sensor manager will be called on to choose a suitable sensor from its catalogue.
The AIP module is informed about newly available sensors via the management interface
of the management layer. Mobile, wireless sensors communicating with the interface can
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be marked ”in range” or ”out of range” via the push registry.

3.4 Processing Layer

The core of the processing layer is the knowledge base. It gets its data from the data
supplier (cf. 3.3) and from the application via the management layer. On the knowledge
base a rule engine accomplishes two tasks. On the one hand it transforms low level
sensor data into high level application data, on the other hand it processes high level
data and initiates two types of actions, namely sensor requests and notifications to the
application (see below).
Selectively a second rule engine can be used, so that these two tasks are also physically
separated and maybe performed more efficiently. In this case the rule engine for pre-
processing sensor data can also be a front end of the knowledge base. Otherwise it can be
an advantage to store the sensor data in the knowledge base allowing any tool that needs
it to access the sensor data as well.
Conversion of low level data into high level data is necessary, to ease the application
programmer’s work. Rules that use data on a higher level are easier to program. As an
example it is difficult and hence less reliable to state correctly a condition of the type
”motion sensor 3 changes to 1”. If we assume the elderly care scenario the application
programmer would prefer something like ”the person is in the bedroom”.
The knowledge base underlies an ontology that can be logically divided into two parts.
The first part describes the relationship between sensors and the AIP module and is pro-
vided by the AIP. Naturally any context data referring to AIP module and sensors is
stored here as well as the incoming sensor data that is identified with the sensors depicted
within the ontology.
The second part is the one that represents the ontology of the application and has to be
written by the application developer. When high level data is gained from the sensor it
needs to be sorted into the world model of the application.
The actions that are triggered by the rule engine are – as mentioned above – sensor re-
quests and notifications to the application. Requests for local sensors are sent to the data
supplier (cf. 3.3) whereas requests for remote sensors are processed by the communication
submodule that obtains the data via inter-AIP-communication (cf. 3.6).
The notifications determined for the application are passed to the management layer (cf.
3.5) that does the forwarding.
The question which type of rule engine, backward or forward chaining, should be chosen
will pursued in section 3.8.
Besides the rule engine, which has a special status because of its ability to trigger actions,
other processing tools can be applied. Each of these tools needs data from the knowl-
edge base that offers methods for polling and subscribing. During the initialization all
tools to be installed are registered as listeners to changes of the knowledge base, so that
they will be notified of any changes and new data. But they also can poll data and query
the knowledge base themselves.
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Actually the processing tools could directly work on the data of the knowledge base.
Unfortunately there is no existing software that provides an appropriate knowledge base
on which several tools can simultaneously work directly. Moreover usually the individual
data representation is crucial for the efficiency of each processing tool. Therefore, before
advanced tools are available, it is inevitable to keep copies of the data or at least parts of
it at every processing tool.
The procedure of each tool comprises getting data from the knowledge base, processing
it and writing the results back. Therefore any means of data processing must be forced
into this scheme.
Bayesian networks or neural networks, for instance, could be other processing tools be-
sides rule engines. For these we briefly describe knowledge management and procedures.
In case the respective processing tool cannot work directly on the central knowledge base,
it needs own memory to store data. For this the Bayesian network uses its variables,
which are the network nodes. The neural network holds the knowledge in its input units.
Whenever relevant changes to the knowledge base occur, the respective algorithm of the
component needs to be started. The Bayesian network calculates the probabilities for
the query variables anew, compares them with given limits and returns the results. The
neural network starts the pass through the network, interprets the results and sends them
to the knowledge base.
We will continue with the so-called preprocessors of the tools (cf. fig. 3.2) and the man-
agement interface in the next section.

3.5 Management Layer

The management layer consists of the management interface and the data reader. More-
over we will describe the preprocessors of the processing tools here, although they rather
belong to the processing layer, as they are determined by the actually deployed tool in-
stance.
The management interface is the interface to the application. The application receives
messages from the AIP module (triggered by the rule engine of the processing layer) and
adapts the AIP module over this interface by manipulating sensor manager, knowledge
base and rule engine. It is possible to add and remove sensors, facts and rules, and
furthermore to query the knowledge base and to send sensor requests, the latter being
indirectly responded by inserting the results into the knowledge base. If other tools (see
3.4) are connected to the knowledge base, they also can be adapted via this interface.
The data reader interprets the configuration for the AIP given by the application or
by a config file. Based on these values the initialization is started, preparing the sen-
sor manager and the components on the processing layer, especially the rule engine, the
knowledge base and its ontology.
During the initialization and at runtime the inputs for the knowledge base and the process-
ing tools are sent to the preprocessors first. Due to the preprocessors the management
interface can be kept generic, because their task is the transformation of the inputs to the
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tool’s specific format. The preprocessor for the rule engine is called rule preprocessor,
and the one for the knowledge base is called data preprocessor.

3.6 Inter-AIP-Communication

Although a basic idea of this framework is that the AIP modules act locally, it hap-
pens that data must be exchanged between AIP modules without the involvement of the
application. As mentioned in the survey (cf. 3.2) there are two ways to establish inter-
AIP-communication, namely either in the sensor layer or in the processing layer.
If the communication module is part of the sensor layer, only raw sensor data is remotely
available. As in the local case, the requesting AIP module should be able to choose,
whether it wants to receive data in pull or push mode from the remote sensor. In pull
mode a single sensor value or an array of values is transferred. The communication is
synchronous between the requesting communication submodule and the requested AIP.
In push mode the communication is asynchronous, the inquirer is registered in the data
supplier and is informed about any new data from the specified sensor.
When placed into the processing layer, the communication submodule can act in a similar
way compared to the processing tools described in 3.4, because it pulls or gets data from
the knowledge base; however, it also puts data into it. The only difference to processing
tools is that the communication process needs to be triggered, e. g. by the rule engine.
As an ontology transfer might be necessary before high level data can be exchanged be-
tween two knowledge bases of different AIP modules, such an exchange becomes much
more difficult to accomplish than a low level data transfer. The software engineer has
to implement an automatic ontology transfer to be performed, before data is exchanged.
Otherwise the application developer is overburdened, when he must design rules to import
parts of the ontology before data can be requested. But even then, the software engineer
has to provide means to import ontologies.

3.7 Evaluation of Architecture

After the specification of the architecture we should check the requirements. For
this we define the architecture with knowledge base and rule engine, but without further
processing tools as basic architecture.

• Filtering and fusion. Considering the basic architecture there is only the rule
engine that processes data. Filtering and fusion are possible, but for more subtle
applications a Bayesian network should be added.

• Learning. A rule engine alone is inappropriate for learning. A learning Bayesian
network or other learning algorithms must be added to the basic architecture, if the
application demands learning.
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• Classification in general. As we are free to add any tools that can work on the
data provided by the knowledge base, we have all means at our disposal to classify
data.

• Locality. The AIP architecture was designed for the local (pre)processing of sensor
data. Nevertheless due to the modularization within it is possible to divide and
distribute the AIP module.

• Communication. We suggested two ways to establish the inter-AIP-communication.
Both meet the requirements, for the exchange of low level sensor data suffices for the
use cases described in 1.4. Nevertheless situations are imaginable, where transfer of
high level data becomes necessary or at least desirable. In such cases communication
should be implemented in the processing layer.

• Generic interfaces. In sections 3.3 and 3.5 generic interfaces are described and
demanded.

3.8 Software Requirements

Before we turn to the implementation of the AIP module, we should see, whether we can
find any software requirements or restrictions beyond the the listed ones:

• The discussed application of the AIP module in different environments and on dif-
ferent platforms imply the use of a platform independent programming lan-
guage.

• The reusability of the processing tools and the encapsulation inherent in the architec-
ture can be achieved best by using an object-oriented programming language.
The design process was already done object-oriented.

• As incoming sensor data is to trigger rules, a data-driven and thus forward chain-
ing rule engine is recommendable. Nevertheless it might be advantageous to be
able to question the rule engine. Then, for example, requests from the application
could be answered more easily. Therefore, if possible, a combination of both,
forward and backward chaining, would be perfect.
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Summary This chapter was devoted to the AIP architecture that satisfies the requirements of
section 1.4. The sensors in combination with the sensor interface form the main data source; the
management interface and thus the application the main data sink. In between, in the processing
layer, the data is transformed and processed by arbitrary and user defined tools. In the sensor
layer or in the processing layer the inter-AIP-communication enables the exchange of (sensor)
data.



Chapter 4

Implementation

Based on the architecture introduced in the previous chapter we continue with the implementation
of the AIP module. This chapter’s structure follows the previous one. After an overview of the
entire implementation each layer will be considered in a separate section.

4.1 General Survey

In the prototype essentially everything was implemented that is necessary for the AIP
module’s employment. The sensor layer is fully functioning and includes the inter-AIP-
communication. The processing layer with knowledge base and rule engine is also ready
for use, its basic version is extended with a reasoner (as part of the knowledge base).
At the moment the management interface is restricted to the basic functions for sensor
manipulation, rule engine and knowledge base. An extension for additional processing
tools is not yet implemented. The entire software was written in Java making it plat-
form independent and allowing object-oriented programming. The software employed is
explained in the corresponding sections. In the sequel class- and method-names will be
characterized by monospaced type.
Figure 4.1 shows the static software structure as class diagram. For the sake of clar-
ity just the most essential methods are included. Attributes and other public methods
are omitted. The class AIPInterface serves as stub for the application. Together with
ApplicationServer and ApplicationThread it will be explained in the Management
Layer section.

4.2 Sensor Layer

For the implementation of sensor manager and sensor interface we use the “Mobile Sensor
API”, i. e. the unfinished Java Specification Request (JSR) 256 [71] of the Java Commu-
nity Process (JCP) [47] in the version 0.10. The JSR 256 is meant “to fetch data easily
and in a uniform way from sensors” and thus fits the requirements.

53
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In several places the JSR 256 relates to the “Generic Connection Framework” (GCF)
that is to be used for the connection of sensors. Although the GCF is only part of the
Java 2 Micro Edition (J2ME) and not of the Java 2 Standard Edition (J2SE), there is an
open source implementation of it. The “ME4SE” [25] is based on the JSR 197 (“Generic
Connection Framework Optional Package for the J2SE Platform”) [8] and presents indeed
the GCF as an optional package for J2SE. Nevertheless it is not used in the AIP module,
because the only code besides the Connection interface that is needed by the JSR 256
has to be added to the Connector class anyway. Therefore we implemented the JSR 256
and the required parts of the JSR 197 ourselves.
Because of the size of the interface description, the definition of the classes and interfaces
is restricted to the important methods. For further information we refer to “Mobile Sensor
API” [71].

4.2.1 Sensor Interface

One of the main requirements for the sensor interface is that every sensor that meets the
extended definition of section 1.1 can be connected to it and that it provides the data
in an uniform way, i. e. independent of the sensor type and vendor. For this purpose
the “Mobile Sensor API” provides the SensorConnection interface that has to be imple-
mented by every sensor that is to be connected. SensorConnection involves getData()
methods for polling information and setDataListener() methods for subscribing to the
sensor. In both ways of data retrieval it is possible to set the buffer size (how many values
are to be returned at one time) and the buffer period (how long data is to be collected).
Every sensor needs SensorInfo that includes all its basic and context information. The
sensor should be identifiable by the URL (Uniform Resource Locator) that consists of
the Quantity to be measured, one ContextType, the sensor model and a location string.
The indication of context via ContextType instances renders more precisely what kind of
sensor is meant, if the Quantity alone is not significant enough. For example, if pressure
is measured, and the context types are “user” and “blood”, the sensor is a blood pressure
meter for clinical use. A URL according to our example would look like:

sensor:pressure;contexttype=blood;model=bpm-xxx;location=hospital

The rest of the sensor information includes the channels (see below), a description string,
the position given by latitude and longitude, the version of the SensorConnection imple-
mentation, the vendor of the sensor, the connection type (wired, embedded, short range,
remote), the maximum sampling rate given in Hertz and further properties if needed.
Unfortunately JSR 256 specifies the maximum sampling rate as an integer, hence sensors
with sampling rates below 1 Hz are poorly approximated by 1 Hertz.
If a sensor measures different values simultaneously, each value is presented by an extra
Channel. So a motion detector has only one Channel, whereas a sensor that determines
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a position in three dimensions has three. The attributes of a Channel object are name,
data type (int, double, Object), Unit, scale, accuracy, an array of Range objects and a
java.util.Vector of Condition objects. Here the scale relates to Unit. If for example
the Unit is meters and the scale is −2, the actual unit is centimeters. A Range is defined
by lower bound, upper bound and resolution. All values that are not within one of the
ranges, are invalid. A Condition is either a RangeCondition, an ObjectCondition or
a LimitCondition. The Conditions are not used by the AIP module itself, but can
be applied by the application designer. A RangeCondition is met, when the measured
value is within the defined range. A LimitCondition checks, whether a numeric value is
less than, greater than or equal to a predefined limit. An ObjectCondition at last tests
the value for equality to a given one. ConditionListeners that will be notified, when
the Condition is met, can be added to the SensorConnection implementations. The
Conditions can be used as preliminary filters.
Each Channel has an URL that is composed of the name and the URLs of the Condition
objects. It is used only by the push registry of sensors. The push registry is closely con-
nected with the SensorListener interface, that is described in the following section 4.2.2.

4.2.2 Sensor Manager

The sensor manager administers the sensors connected to the AIP module. New sensors
can be added, and registered sensors can be requested. The sensor manager includes the
SensorListener interface, the abstract class SensorManager and its implementation.
The main task of the SensorManager is to find the sensors that are requested via the
DataSupplier. For this it provides the findSensors() methods that get either a String

or Quantity and ContextType. Both methods return an array of fitting SensorInfos.
The String that is passed to findSensors() is a URL as defined in section 4.2.1. If only
the Quantity to be measured and the ContextType are specified, the second method
must be applied to select a proper sensor.
In the AIP implementation the SensorManagerImpl itself keeps the list of SensorInfos.
Various methods are available to add and remove SensorInfos.
The SensorListener interface is not implemented by any class of the AIP, but still can.
It is meant for listening to events providing information about changes due to the avail-
ability of registered sensors. In case of wired sensors it will receive notifications, when the
cable is plugged in or out. In case of wireless sensors a notification will be sent, when the
sensor enters or leaves the range of reach.
In the smart elderly care home scenario SensorListeners would be of much help. As the
bodily functions of the monitored person have to be measured directly on or in the body,
the sensors cannot be assigned permanently to one of the static AIPs. But it may be
useful to make bodily data available to AIPs in the actual room. This could be achieved
by enabling communication between the room’s AIP module and the one on the body.
More elegant is a solution, where the SensorListener automatically detects body sensors
in reach and opens a link. Then the person does not have to carry an AIP module, and
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inter-AIP-communication between mobile and static AIP is not needed.
The underlying principle is called “push registry”. Further information about the topic
can be found in [82].

4.2.3 Data Supplier

Basically the data supplier is identical with the DataSupplier class that is not part of
the JSRs. It uses the Connector class from the “Generic Connection Framework” and
the SensorManagerImpl that was described in the previous section. Furthermore it is
the interface to the processing layer, is fed with sensor requests by the RuleEngine or by
the communication object and sends SensorData to the KnowledgeBase or to other AIP
modules via the communication object.
For starting a sensor request one of the DataSupplier’s sensorRequest() methods
need to be called, passing the sensor’s URL or alternatively Quantity and ContextType,
the command (“open” or “close”) and in case of opening the mode (“pull” or “push”).
Additionally it has to specify the consumer, thus the AIP that started the request, and
the producer, the AIP module that is supposed to have such a sensor. The producer AIP
can be addressed by its ID or by one of the following keywords:

• LOCAL. Only the local AIP is checked, whether the requested sensor, specified
by its URL or by Quantity and ContextType, is available. For this one of the
SensorManager’s findSensors() methods is called and the SensorInfo returned first
is taken.

• REMOTE. The request is broadcast to all (neighboring) AIPs. If multiple AIPs
have sensors that meet the specification, all sensors will be treated equally, meaning
that they are all opened (in push or pull mode) or closed. Any returned data will
be written into the KnowledgeBase.

• LOCAL REMOTE. If the local AIP has an adequate sensor, the request will be
handled like the LOCAL case, otherwise like the REMOTE case.

If the producer is remote the request will be passed to the Communication object. If it is
local, the sensorRequest() method will determine the SensorInfo and put the request
to a queue as a ConnectionRequest.
With the attributes of the ConnectionRequest the method openConnection() is called
by the DataSupplier’s thread. By calling SensorInfo’s getUrl() the URL of the sen-
sor is determined and passed to the open() method of the Connector class. At last
the Connector returns the newly created SensorConnection instance that represents the
sensor. (Regrettably due to the design of the Connector class the SensorInfo has to be
added to the SensorConnection afterwards.)
If the sensor is not yet contained in the KnowledgeBase, it will be inserted with all the
context information that is provided by its SensorInfo and its Channels. In case of a
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remote sensor, the SensorInfo has to be imported from the referring AIP module.
For every sensor (in push mode) the DataSupplier holds a SensorConsumerRelation

object providing a list of the sensor’s consumers. They all are notified, whenever new
data is pushed by the sensor. Pull requests are directly answered, and the consumer is
not added to the list.
The DataSupplier’s second task is passing SensorData to the local KnowledgeBase or
to the Communication submodule. If SensorData is requested via polling, the getData()
method of the referring SensorConnection will be called that returns the SensorData

directly. On the other hand in push mode the DataSupplier is notified of every new
sensor value. For all SensorConnections the DataSupplier is the only DataListener.
In pull mode as well as in push mode the SensorData is transformed to a TripleFact that
is then passed to either KnowledgeBase’s addFact() or Communication’s sendFact().
The latter also needs the consumer.

4.3 Processing Layer

The implementation of the processing layer consists of a KnowledgeBase, a RuleEngine

and the related preprocessors. In the JenaKnowledgeBase a reasoner is integrated and
can be regarded as an additional processing tool. But so far there is no preprocessor
implemented for it, and it cannot be controlled via the the management interface (AIP
class).
Moreover there are two so-called factories, namely the KnowledgeBaseFactory and the
RuleEngineFactory. Based on the config file that is read in during the initialization,
they instantiate the chosen KnowledgeBase or RuleEngine. In the AIP implementa-
tion one KnowledgeBase, namely the JenaKnowledgeBase, and two RuleEngines, namely
DroolsRuleEngine and FireRuleEngine, are available. The factories are based on the
design pattern Factory [18].
Everytime, when a fact is added to the KnowledgeBase, it is automatically forwarded to
the RuleEngine and will be forwarded to any other registered processing tool. As the
reasoner works directly on the KnowledgeBase, it need not be notified of changes.

4.3.1 Knowledge Base

The KnowledgeBase supplies all processing tools with data and stores their results. More-
over it is fed with data by the DataSupplier, which is the collecting point for all sensor
data, and by the application. All method calls coming from the application pass the
DataPreprocessor, whose principal role is to adapt data formats to the specifications of
the KnowledgeBase instance. Therefore the DataPreprocessor must be replaced also,
when the KnowledgeBase implementation is replaced.



CHAPTER 4. IMPLEMENTATION 59

4.3.1.1 Data Exchange Format

The format for the exchange of data between the components is defined by the TripleFact
class, i. e. before transferring data it has to be transformed to TripleFact objects. A
TripleFact is equivalent to a triple of the Context Meta-Model (see 2.4 or [17]) with
fixed attributes and quality classes. Both specify a property instance, which connects
two entity instances or alternatively one entity with one datatype instance, and add the
attributes timestamp and uncertainty (see table 4.1 for details). In case of sensor values
these attributes are the measuring time and the standard deviation of the estimated error.

TripleFact Context Meta-Model Description

PropertyClass Property Class
PropertyInstance Property Instance
SubjectClass Entity Class
SubjectInstance Entity Instance
ObjectClass Entity or Datatype Class
ObjectInstance Entity or Datatype Instance
Timestamp timestamp of Property
Uncertainty Quality Instance displays measuring error
isDataType boolean defining the object
DataValues Datavalue Instances list of Datavalue instances

Table 4.1: Relation between TripleFact and Context Meta-Model.

The exchange format was adapted to the Context Meta-Model, and the implementation
JenaKnowledgeBase of the KnowledgeBase interface is based on the related Context En-
gine. Nevertheless it is possible to use other KnowledgeBase implementations. To use
OWL (Web Ontology Language) or at least RDF (Resource Description Framework)
would be an advantage for these implementations but it is not a prerequisite. One could
also think of a relational data base, but software details will be discussed later. At first
we will examine the KnowledgeBase interface.

4.3.1.2 Interface

The interface KnowledgeBase mainly provides methods for adding (addFact()), canceling
(removeFact()) and finding (findFact()) facts. The query() method allows to formu-
late complex queries in RDQL (RDF Data Query Language) [84] (W3C submission),
similar to SQL (Structured Query Language), used with relational data bases. The re-
sults of the query() are returned in form of a java.util.Iterator. Processing tools are
registered as KnowledgeBaseListener by the method addKnowledgeBaseListener().
The initialization of the KnowledgeBase is triggered by calling initKnowledgeBase().
For this the caller, namely the AIP instance, must pass three files containing respectively
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the AIP specific ontology, the application-oriented ontology and initial knowledge. All
files need to be written in OWL DL to conform to the management interface, but can be
transformed into other formats by the DataPreprocessor. For writing the OWL files it
is recommended to use one of the numerous OWL-compliant ontology editors. The AIP
specific ontology and the ontology and knowledge files for the prototype were generated
with “Protégé” of Stanford University [53].

4.3.1.3 Ontology

The ontology’s application specific part must be written by the application developer.
The AIP-specific part of the ontology is the same for all AIP agents and it is built ac-
cording to the entity-relationship diagram1 of figure 4.2 in OWL DL.
The main entities (or objects) are AIPs, Sensors and Values. When a new sensor value
is added, it is assigned to that Sensor instance which represents the actual sensor. The
Sensor instances again are connected to the corresponding AIP instances.
All other entities connected to theSensor entity represent context information to the sen-
sor. This context information is essentially the one listed in section 4.2.1 when describing
the SensorInfo.
At start time the knowledge base includes the local AIP module and in addition that AIP
modules it can communicate with. During initialization these must be specified in the
config file. Only local sensors are written to the KnowledgeBase. But, when at runtime
data is exchanged via inter-AIP-communication, sensors of other AIP modules are entered
also.
The application-specific part of the ontology can be connected to the AIP-specific part
sharing the Application entity. But this is not necessary, the partial ontologies can also
remain separated.

4.3.1.4 Software

For the implementation the Context Engine of Fuchs [17] is used, which is based on the
semantic web framework Jena (see 2.4, [46]). It is accessed through the wrapper class
JenaKnowledgeBase implementing the interface KnowledgeBase.
If a different software is to be used one must program a corresponding wrapper class and
an extra DataPreprocessor. As mentioned above, a software is advisable that utilizes
OWL or RDF. However, particularly through the usage of the entity-relationship model
it becomes obvious, that a relational database also is apt as KnowledgeBase. Then the
database scheme serves as ontology in which data can be placed.
How to get from an entity relationship model to a relational database is well defined and

1Entity-relationship diagrams were proposed by Chen in 1976 [6] and are primarily intended for the
design of relational database schemes. Parts of the real world are mapped to entities and relationships
between them.
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Figure 4.2: Entity relationship diagram of the AIP specific part of the ontology. It
is extended with subentities of Sensor and Values from the smart elderly care home
scenario (see 5.1). Using the Context Engine software, the entities’ attributes need to be
transformed to triples: entity – relationship – entity.

can be easily accomplished with the help of a textbook (e. g. [30]).
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4.3.2 Rule Engine

The rule engine is the only mandatory processing tool, because it does not only write
back its results to the KnowledgeBase, but also triggers actions. These actions are on the
one hand sensor requests sent to the DataSupplier, on the other hand messages for the
application transmitted via the management interface, i. e. the AIP object.

4.3.2.1 Interface

It is assumed, that the RuleEngine possesses its own database, so that there are not
only methods for adding, removing and modifying rules, but also methods for adding,
removing and modifying facts. Rules and facts are either passed as java.lang.String

or as java.lang.Object.
The method fireAllRules() must be used, when the rule engine does not fire automati-
cally as soon as all conditions are met. This is the case for “Drools” (DroolsRuleEngine),
which is used in the AIP module, but not for “Fire” (FireRuleEngine).
The rule engine is initialized through initRuleBase(), where the rule base is turned over
either indirectly by a file name or directly as java.io.InputStream.
The remaining methods of importance execute actions mentioned above. SendAction()

sends messages to the application by just passing java.lang.Strings or additionally a
java.util.HashMap that may contain arbitrary Java objects (provided they are serial-
izable). The objects in the HashMap are merely considered as add-ons to the String

message.
Sensor requests were discussed in section 4.2.3. They are triggered by calling one of the
sensorRequest() methods.

4.3.2.2 Rule Preprocessor

The RulePreprocessor is actually intended to adapt the rules, which arrive via the
management interface, to the rule language of the rule engine used. Thus the management
interface can work with a fixed rule language independently of the actual rule engine.
Because of the great variety among rule engines, however, it is difficult to find a rule
engine that can be translated to all the other rule languages.
E. g. in the rule base of “Drools” both, the left hand sides (conditions) and the right hand
sides (consequences), are pure Java code, whilst “Fire” permits only predicate symbols
with string variables on left hand sides. A compromise in this case would be, that Drools
also is restricted to conditions with predicates and string variables.
To avoid such painful compromises it would be necessary to narrow the set of admissible
rule engines. Standards, apt for that, are:

• Prolog. Because of its long history prolog’s notation is a well established quasi
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standard. Even if there are minor differences between the various prolog implemen-
tations, their kernels are essentially the same.

• Rule Markup Language (RuleML). This rule language, based on XML and
RDF, is designed to comprise many different rule languages (forward and backward
chaining) and to unify their formats. It is also devised for the exchange of rules
and of course can be processed by rule engines. The rule engines “Mandarax” and
“jDREW” use RuleML for example. RuleML is proposed as a W3C standard by
the Rule Markup Initiative [4], but not yet submitted.
Unfortunately RuleML is badly documented, and only parts are finished so far,
mainly the Datalog sublanguages, for which a tutorial is provided ([4]). Since Dat-
alog uses restricted Prolog rules and since Prolog rules can be mapped to RuleML
(e. g. with “Prolog2RuleML” [12]), RuleML is comparable with Prolog.

• Semantic Web Rule Language (SWRL). SWRL [28] is a combination of OWL
and the RuleML Datalog sublanguages, so that it extends OWL by Horn-like rules.
Thus, SWRL is also comparable with Prolog. Yet there is hardly any documentation
available.

Hence as a consequence all (more or less) suitable rule languages use notations similar to
Prolog with Horn-like rules. Although forward chaining (e. g. jDREW) and backward
chaining (e. g. Mandarax) are possible, we abstained from a standardized language for
the management interface. One reason is that the examined languages did not satisfy
all requirements, an other reason is that there are many rule engines that do not use
Horn-like rules (e. g. Drools).
As a consequence of doing without a standardized language the rule base must be speci-
fied in the rule engine’s rule language. That is not necessarily a disadvantage, even if the
reusability of the rule base is impaired when the rule engine is to be replaced.

4.3.2.3 Software

Since the rule engine in the AIP module is exchangeable, the software chosen for the AIP
implementation need not be definite.
When the AIP is to be installed in a system and when the AIP’s function is specified
within the overall software, the selection can be changed to achieve a better adaption
to the requirements. This section will list several rule engines, which were investigated
during implementation.

Prolog Prolog allows merely backward chaining and therefore does not conform to the
software requirements in 3.8; nevertheless several Prolog implementations were studied
with the intention to adapt Prolog to these requirements. The wrapper class could take
over the firing of rules, which, by the way, is also necessary with some forward chaining
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rule engines like Drools. Yet the necessity to check everytime all the goals of interest
presents a severe drawback, unless the application permits the rules to be fired periodi-
cally instead at any change of data.
Imaginable is a combination of Prolog and a forward chaining rule engine, which can
work with the same set of rules. As stated in 3.8 a combination of forward and backward
reasoning is very desirable.
Forgy [14] showed that forward and backward reasoning are not basically different aside
from the direction. In both cases subgoals are defined as waypoints, which usually match
in spite of the different approaches.
A further reason to consider Prolog is that because of the findings from 4.3.2.2 the Prolog
notation or something similar was initially thought of as a standard rule language for the
management interface.
Vaucher’s XProlog [91] represents an extension to Winikoff’s WProlog [96]. Like WPro-
log it is written in Java and can easily be attached to Java programs. It was not selected,
because it does not support the adding and deleting of rules. At present van Schooten
extends XProlog under the name of YProlog [90]. His answer to the question, whether
he will add the commands, was “maybe”.
The same problem, that no rules can be added, occurs for tuProlog [74] of Bologna
University. In tuProlog an assert command is available, but still not working properly.
There are more Prolog descendants, e. g. Wielemaker’s SWI-Prolog [92]. It was disre-
garded, because its integration into a Java program seems to be more complicated than
it would be with XProlog and tuProlog.

Drools, Fire and Jena Drools [43], Fire and the rule engine included in Jena [46],
do forward reasoning and use the Rete algorithm by Forgy [15]. Rete is latin for net.
The algorithm creates a network fusing conditions to a single node, if they appear on the
left hand side of more than one rule. When new facts are asserted or modified, all nodes
satisfied by that fact will be marked. If the entire left side thus becomes true, the rule
will be triggered. The Rete algorithm achieves a speedup at the cost of memory. It is the
base for all recent forward chaining rule engines.
Although the Jena rule engine could work directly with the knowledge base chosen,
which also is based on Jena, it was not studied more deeply, because according to [78] it
is not yet mature. In future it might be a good choice because of its support for forward
and backward chaining.
Drools is a Java based, JSR-94-compliant [85] rule engine that is used in the AIP module.
The conditions and consequences of the rules can be stated in Java, Python and Groovy
simplifying the collaboration with the rule engine. The rule base for initializing the rule
engine is a XML file into which the code is integrated. The facts added to the “working
memory” are arbitrary Java objects.
A disadvantage of Drools is that adding new rules is problematic, since the network
must be newly generated by the Rete algorithm everytime. In the AIP module the
method addRule() of the wrapper class was implemented the following way: The rule
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base is extracted, the rule is added and finally the network is generated anew by calling
newWorkingMemory().
Fire was developed by Siemens Corporate Technology. It is written in Java and can
easily be integrated into Java software. The left hand side of a rule consists of predicate
symbols. If they are satisfied, the rule is fired automatically and a function is called that
is specified by the right hand side. This is either a built-in function to manipulate the
facts in the working memory (knowledge base) or a user-defined fireRHS() function. For
the latter only the function’s class is given, which has to implement the RightHandSide

interface that includes the fireRHS() method.
One advantage of Fire is that at runtime rules and facts can be added without any prob-
lem. A wrapper class and a RulePreprocessor were completed. For lack of time the rule
engine was not completely integrated into the AIP module.

4.4 Management Layer

Since application and AIP module communicate via socket connections, the manage-
ment interface consists of two parts. At the AIP module’s side the classes are AIP and
AIPThread, DataReader and DataFile. The application houses the classes AIPInterface,
ApplicationServer and ApplicationThread. Moreover it must implement the interface
Application.

4.4.1 Management Interface

The AIPInterface class represents the actual management interface. The public inter-
face of this class is identical with the public interface of the AIP class and serves therefore
as a stub. If a method is called by the application, a socket connection is opened and
the name of the method and the parameters are sent to the AIP instance together with a
boolean value indicating, whether a return value is expected.
The AIP class extends java.lang.Thread. Its run() method listens to the specified port,
to which the method calls are sent by the application, and passes each method call to a
new AIPThread instance. The AIPThread calls the specified method of the AIP and sends,
if requested, the return value back to the AIPInterface.
In the reverse case that a message is to be sent to the application the RuleEngine wrap-
per class calls AIP’s notifyApplication() method passing two java.lang.Strings (“id”
and “message”) and a java.util.HashMap. The HashMap must contain only serializable
objects, otherwise it cannot be transmitted via the socket connection.
A message, sent by the AIP object, is received by the ApplicationServer that starts an
ApplicationThread. The thread calls the messageReceived() method of the implemen-
tation of the Application interface.
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The Interface in Detail The AIPInterface can be divided into the part handling
the initialization, the part that attends to the DataPreprocessor, the part for the
RulePreprocessor and the one serving the SensorManager. Table 4.2 lists all these
methods and separates the four parts by double lines.
The constructor of AIPInterface and the method initAIP() will be discussed more
closely in the following section “Initialization”.

Method Description

AIPInterface Constructor, see section “Initialization”
initAIP see section “Initialization”

insertTripleFact sends TripleFact to KnowledgeBase

removeTripleFact removes triple from KnowledgeBase that equals
passed TripleFact; this method is not supported by
JenaKnowledgeBase

findTripleFact returns TripleFact that has the passed ID; this method is
not supported by JenaKnowledgeBase

queryKnowledgeBase takes RDQL query and returns Iterator of results

addRule adds rule given as String or Object to RuleEngine

removeRule removes rule from RuleEngine that equals rule given as
String or Object

addSensorInfo forwards SensorInfo to SensorManager

addSensorInfos forwards array or InputStream of SensorInfos to
SensorManager

removeSensorInfo removes SensorInfo specified by its URL or by Quantity and
ContextType

Table 4.2: Public interface of AIPInterface.

4.4.2 Initialization

Before an AIP module can be initialized by the application, it has to be started in its Java
Virtual Machine (JVM). When calling the AIP’s main() method, the config file together
with two port numbers must be transmitted. On the first port the AIP module listens for
messages from the application, on the second one for messages from other AIP modules.
Moreover the sensors must be readied, i. e. especially the SensorConnections must be
available.
The application has to start the ApplicationServer that receives messages from all AIP
modules. Then, to initialize an AIP module the application has to call the constructor
of AIPInterface and its initAIP() method. The constructor gets IP address and port
number of the AIP module, and initAIP() gets an array of SensorInfos.
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Figure 4.3: Sequence diagram of the AIP module’s initialization.

The initAIP() call is transferred to the AIP module, so that the AIP’s initAIP() is
called, which starts the initialization (see figure 4.3). Therefor the config file written in
XML is read out by the DataReader and its contents are put into the DataFile object.
For reading the file the DataReader uses the Xerces DOM-parser of the “Apache XML
Project” [69].
The config file specifies:
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• The ID string of the AIP module.

• IP address and port of the application.

• IDs, IP addresses and ports of the neighboring AIP modules. Later the IDs are used
to identify the owners of the requested remote sensors. Naturally IP addresses and
ports are needed for the inter-AIP-communication.

• The (fully qualified class) name of the KnowledgeBase.

• The path of the file that contains the application specific ontology.

• The path of the file that contains the initial knowledge.

• The (fully qualified class) name of the RuleEngine.

• The path of the file that contains the rule base.

The SensorInfos, passed to initAIP(), must contain further specifications in their
java.util.HashMap “properties”, namely “type”, “class” and “command”. “type” is the
type or name of the sensor and is used, when triples are written into the KnowledgeBase.
That way the application developer can use the name in the rules. “class” is the fully qual-
ified class name of the SensorConnection’s implementation. It is used by the Connector.
“command” specifies by PULL or PUSH, how the sensor is to be started. Either the sen-
sor sends a first value for the KnowledgeBase and then waits for requests, or in push mode
starts immediately to notify the DataSupplier, whenever a new sensor value is available.
With the SensorInfos and the information provided by the config file the AIP module
can be initialized completely.

4.5 Communication

The inter-AIP-communication is realized on the sensor layer. The communication sub-
module interacts with the DataSupplier and consists of the two classes, Communication
and ServerThread.
The Communication class that provides the interface for the inter-AIP-communication is
instantiated by passing the related DataSupplier instance, the IDs of the neighbouring
AIP modules and the communication port to the constructor. At runtime further “neigh-
bours” can be added by calling addNeighbour(). The inter-AIP-communication does not
support the use of AIP modules as intermediaries to allow a connection between AIP
modules via a third one.
The communication process is similar to that between AIP module and application. Here
also socket connections are established for transmitting sensor requests and sensor values.
The Communication object’s thread passes incoming sensor requests and sensor values to
ServerThreads, which call methods of the DataSupplier for further actions.
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Sensor requests by the DataSupplier intended for other AIP modules are handled by the
sensorRequest() methods. Their parameters equal the ones of the corresponding meth-
ods of the DataSupplier (cf. 4.2.3), i. e. the sensor’s URL or alternatively Quantity and
ContextType (to identify the sensor), consumer and producer (the involved AIP mod-
ules), the command (OPEN or CLOSE) and the mode (PUSH or PULL).
In order to transmit sensor values the method sendFact() is called, for which beside the
TripleFact the local AIP must be stated as consumer.
Finally a method sendSensorInfo() is needed. When sensor data is requested remotely
and the calling AIP module is not yet registered as a consumer in the DataSupplier,
then with the first data the sensor’s SensorInfo is sent also, to provide the consumer’s
KnowledgeBase with the necessary sensor data.



70 4.5. COMMUNICATION

Summary

In the first part of this chapter, a survey of the implementation of the AIP architecture was given.
Subsequently the three layers were described in detail, followed by the inter-AIP-communication
that is part of the sensor layer.



Chapter 5

Realization of Scenario

This chapter is devoted to the implementation of the “Smart Elderly Care Home” scenario (see
1.3.4), which is based on the AIP module software introduced in chapter 4.

As a demonstration and test of architecture and implementation the smart elderly care
home scenario was implemented. For this a Java application was written that uses six
AIP modules in order to monitor the person’s behaviour and her bodily functions. Person,
environment and sensors are simulated by software.
This chapter begins with a recapitulation of the scenario, before it describes user interface
and fake sensors (5.1.1), the system’s topology (5.1.2), the application specific ontology
and rules (5.1.3) and finally special features of the initialization (5.1.4).

5.1 Smart Elderly Care Home

In section 1.3.4 the elderly care scenario was outlined as a way to guarantee that in the
future old or sick persons receive the necessary attendance. A computer system equipped
with various AIP modules and a vast number of sensors takes over the the health moni-
toring and notifies physicians and nursing stuff when necessary.
This scenario is extended with smart home applications, which provide additional help
and comfort in everyday life. This might include switching on the light automatically
when a person enters a room and adjusting the temperature. Two scenarios are merged
in this case, hence the name ”Smart Elderly Care Home” was chosen.
The ”Smart Elderly Care Home” scenario was implemented as a Java applet. The mon-
itored person’s actions and the sensors are simulated through software and input from
keyboard or mouse. AIP modules process the data. This application will now be described
in detail; both aspects, elderly care and smart home, are regarded jointly.
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5.1.1 User Interface and Sensors

Figure 5.1 shows the applet’s graphical interface, depicting a person that can be moved by
mouse clicks, in her apartment with living room, bedroom, kitchen, hall and bathroom.
The right margin marks the outside surroundings. The margin is also used to display text
messages from the computer system doing the monitoring. Shown are time of day, the
person’s presumable location and activity, temperature and pulse, both measured at the
body, and finally the room temperatures.
Normally the AIP would store such values locally and alert the application only, when
something essential happens. For this demonstration however, unimportant data too is
transmitted to the application, to make it easier for the viewer to follow the ongoing
development. In order to get these values permanently, all sensors are started in push
mode. Inside the rooms several sensors and actuators are denoted. They are explained
together with the invisible ones:

Figure 5.1: Smart Elderly Care Home. Applet showing the flat.

There is a motion detector in every room, indicated by a black dot in the plan. When
a motion is recognized, the AIP sends a message to the application. The grey coloured
circle around the motion detector turns red, Action changes to “moving” and the room,
housing the detector, is assigned to Locality. Action changes to “nothing” when no motion
is detected, which means that the system does not know, what the person is momentarily
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doing.
In bathroom and kitchen two objects are marked by short lines. The white line in the
bathroom indicates a RFID tagged toothbrush, the black line in the kitchen a pill box.
When any of these objects is removed from its place, the corresponding RFID reader
detects that the RFID tag is out of reach and notifies the application. It is assumed
that the person indeed takes his pills or brushes his teeth. The Action “pills taken” or
“toothbrush taken” will be displayed.
Pressure sensors are installed in the bed in the bedroom and in the couch in the living
room. The sensor in the bed notices when the person goes to bed. Then the Action
”sleeping” is displayed and the ”night program” is started which lowers the room temper-
atures. The couch sensor detects when the person is sitting down and displays the Action
”sitting”. Leaving bed or couch changes Action to ”nothing”.
Opening and closing the front door is detected by a switch and indicated by the Action
“opening door” or “closing door”. In cooperation with the motion detector in the hall, it
can be found out, whether the person entered or left the apartment.
In every room there is a thermometer (temperature sensor). Attached to the person’s
body is a clinical thermometer and a pulse meter. For display the AIP module trans-
mits temperatures and pulse values directly to the application.
As there are no real sensors, the sensor values must be simulated by software. For each
fake sensor there are three classes, namely its manager, its value generator and the im-
plementation of the SensorConnection:

• The managers are used on side of the application to provide SensorInfos and to
handle requests from value generators that need data for the simulation. Of course,
there would be no need for such requests, if the sensors were real.

• The value generators use application data and random generators to determine
the sensor values and send them to the associated SensorConnection according to
the sampling rate.

• The SensorConnection implementations push data to the DataListener, here the
DataSupplier, or allow access by getData() methods (cf. 4.2.1).

In case of the RFID reader, for instance, the classes are RFIDReaderManager (manager),
RFIDReaderFake (generator) and RFIDReaderSensor (SensorConnection). In order to
determine, whether the person uses the RFID tagged item, the RFIDReaderFake asks the
RFIDReaderManager for the person’s position in the applet and calculates the distance to
its own position – given by the SensorInfo’s attributes longitude and latitude.
MotionDetectorFake and PressureFake work quite similar. After the determination
of the room, the distance between person and sensor is calculated. A motion detector
perceives a motion, when the person is in range and when three successive positions of
the person are not all equal. For the PressureFake counts: The lesser the distance, the
higher the pressure.
For the front door’s switch SwitcherFake determines, whether the connecting line be-
tween two successive positions of the person intersects the door line.
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The person’s pulse and body temperature and the room temperatures change randomly,
though the temperatures depend on the heating. The radiators’ values are provided by
the application, and ClinicalThermometerFake and ThermometerFake can request their
managers to get them.
The radiators can be turned on and off from the keyboard: “1” (kitchen), “2” (bathroom),
“3” (bedroom), “4” (hall) and “5” (living room). The TV set (black box in the living
room) cannot be switched on by keys unfortunately, but it can be used by the application
to display advices, e. g. when the person has forgotten to take her pills.
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Figure 5.2: Smart Elderly Care Home. System topology.

As mentioned above, the person movement is controlled by mouse clicks. So the program’s
user can choose the action by navigating the person through the flat, let her sit or move
her to the kitchen to take her pills.
Due to the measured behaviour and due to the AIP modules’ logic messages about the
person’s state are sent to the medical staff. Three states, namely “quick” (or healthy),
“weak” and “emergency”, are distinguished. The actual state is indicated by the person’s
facial expression. Moreover to abridge the simulation the person’s state can be forced to
change by pressing “q” (“quick”), “w” (“weak”) or “e” (“emergency”).
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5.1.2 Topology and Communication

As argued in section 1.3.4 local data is sufficient to judge the situation. If every room
was furnished with an AIP module, data exchange via inter-AIP-communication would
be needed only, when the person moves to an other room. But the local information is,
beside the sensor data from the actual room, also the body data. Because of the missing
push registry (cf. 4.2.2) an extra AIP module must be fixed to the person’s body, and
data has to be exchanged between the room’s and the body’s AIP module as well.
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Figure 5.3: Smart Elderly Care Home. Application specific ontology.

Therefore the monitoring system consists of the application and six AIP modules, one for
each room and an extra one for the body. The topology is shown in figure 5.2. Dashed
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lines between components signify the ability to communicate.
Although application and AIP modules are located on the same computer in the im-
plementation, they naturally can all run on different computers. In that case only the
loopback addresses (127.0.0.1) had to be replaced by suitable IP addresses.

5.1.3 Ontology and Rules

As described in 3.4 and 4.3.1.2 the ontology splits into the AIP specific part, provided by
the AIP module, and the application specific part that has to be written by the applica-
tion designer. Both parts can be linked using the Application entity of the AIP specific
ontology (see figure 4.2).
For the smart elderly care home scenario a slightly simplified ontology is shown in figure
5.3. It can be used in any of the six AIP modules. The main entities are Person and
Room. They are directly linked with all important entities and attributes, like the Per-
son’s State and the Room’s Observed Objects. So queries or rules that naturally use one
of these entities as entry point, can be kept short and concise.
Note, in order to use the Context Engine (see 4.3.1.4 and [17]), the attributes in the entity
relationship diagram need to be expressed as triples. For example, the entity Person and
the attribute Name could be extended to a triple: Person – hasName – Name, where
Person is an EntityClass, hasName is a PropertyClass and Name is a DatatypeClass,
whose instance will keep the actual name later.
At runtime all data that is sent to the knowledge base must be sorted according to the
ontology. It is forwarded to the rule engine, whose task is refining low level sensor data
as well as processing high level data. The rules’ conditions may depend on both, the
actual knowledge and the underlying ontology. This is shown in the following simplified
exemplary rule, written in a pseudo rule language. The rule is fired, when a TripleFact

“fact” from the kitchen’s motion detector arrives:

IF subject instance of fact is the ID of motion detector
AND subject class of fact is “Sensor”
AND property class of fact is “hasValues”
AND first data value of fact is 1
THEN send TripleFact with object class “Action” and object instance “mov-
ing”
AND send TripleFact with object class “Room” and object instance “kitchen”

The actual rule in Drools’s rule language is more laborious, because for building the
TripleFacts quite a lot of data is needed, and both, conditions and consequence, must
be expressed in Java code.
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5.1.4 Initialization

The general initialization process is described in 4.4.2. Each AIP module has to be started
in an own Java Virtual Machine (JVM), before the application can initialize it via a socket
connection. To ease the program’s launch a small Perl program was written. On Windows
calling perl jvm.pl will start the application and the six AIP modules in different JVMs,
each in its own console, but all on the same computer.
The AIP specific files containing the configuration, the rule base, the ontology and the
initial knowledge respectively must be provided for the AIP modules locally. An example
configuration file for the AIP module in the kitchen is shown in B. In this implementation
the ontology file is the same for every AIP module.
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Summary

In this chapter the implementation of the smart elderly care home scenario is described. The
system’s topology consists of six AIP modules and several sensors simulated by software. After
the explanation of the ontology and an exemplary rule the chapter concludes with scenario specific
features of the initialization.



Chapter 6

Conclusion

6.1 Summary

The thesis aims at developing a software architecture for the local and autonomous
(pre)processing of sensor data.
Unlike in many other approaches that favour complete or almost complete central data
processing, we here strive for local preprocessing as far as possible.
In various scenarios we point out areas of application where such preprocessing can be
reasonably applied. It turns out that the processing requirements vary with different tasks
and that a variable architecture fits best.
To facilitate that, diverse concepts and tools for processing sensor data are investigated
and adapted for the use in our architecture. These concepts and tools include rule-based
and probabilistic reasoning, learning and fusion algorithms, knowledge-based systems, on-
tologies and context.
Based on the requirements, deduced from the scenarios, architectural designs are devel-
oped and discussed. Eventually a three layer presentation is chosen, in which inter-AIP-
communication is not appointed to a definite layer:

1. On the sensor layer a generic sensor interface for arbitrary sensors is provided.
The sensor manager is responsible for finding the specified sensors and controlling
the connections to them. Finally, the data supplier is the interface to the processing
layer. It receives all sensor data and forwards it to the knowledge base.

2. The processing layer contains the knowledge base of the entire AIP module. Di-
verse processing tools have access to it, among others the rule engine, which in
addition transmits sensor requests to the data supplier and messages – addressed to
the application – to the management interface.

3. The management layer contains the management interface to the application.
Messages to the application are transmitted via this interface. Vice versa it is used
by the application to install new sensors and to control the processing tools through
their tool preprocessors.
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4. The communication submodule is situated either on the sensor layer or on the
processing layer and permits an exchange of raw data from the sensors or high level
data from the knowledge base.

On the basis of this architecture the AIP module is implemented in Java. Here the
communication submodule is connected to the data supplier which is designed to handle
remote sensor requests as well.
During implementation various software was checked for its usability in the AIP module
and in some cases adopted.
The thesis is concluded with implementing the “smart elderly care home” scenario. In
this health monitoring for a person is provided by a computer system that uses six AIP
modules and several sensors to observe the person’s behaviour and her bodily functions.
The environment and the sensors are simulated by software.

6.2 Critical Discussion and Open Questions

Besides the positive and innovative aspects there are also aspects which may draw critique
and aspects which are not treated in the thesis but deserve being investigated by future
work.
The greatest benefit is also the most obvious field for critique. The use of arbitrary tools
for the corporate processing of (sensor) data is not yet investigated and maybe difficult
to coordinate. In principle any tool can depend on the data provided by any other tool.
Hence the order of accesses to the data base can be decisive.
An other critical point is processing speed. Often AI algorithms have a poor performance,
and in the case of knowledge bases and rule engines it will get even worse with the amount
of data. For critical real time applications like the Electronic Stability Program from the
automotive scenario, AIP a priori is not qualified. It is an open question, how various
configurations of the AIP module will behave in such a case.
Moreover one can ask, whether the configuration effort is justified. After all it may be
necessary to initialize additional tools besides the provision of ontology, initial knowledge
and rules for knowledge base and rule engine. In the case of learning algorithms that
could even mean training the system prior to its use. Yet, considering the free choice of
tools, the effort for the configuration can be estimated and controlled. It is self-evident
that a simpler tool is to be preferred, when it does the job satisfactory well.
Finally there remains the question, already discussed in chapter 3, in which layer to place
the communication. An exchange of sensor data is sufficient for the scenarios under con-
sideration. In scenarios with more emphasis on communication, the exchange of high level
data gains importance. However, one should keep in mind, that the focus of this thesis is
on local processing, which should do without communication as far as possible.
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Used Software

Apache Ant Java based build tool, similar to Make. Used for building the AIP software
and the scenario. [40]

Automatica Selection of macros for Metapost to draw automatons and graphs. Used
for drawing several pictures. [39]

Context Engine Knowledge base implementation based on Jena and on Fuchs’s Con-
text Meta Model. Used in the AIP implementation. [17]

Drools Open source forward chaining rule engine. Used in the AIP implementation.
[43]

Fire Forward chaining rule engine by Siemens Corporate Technology. Used in the AIP
implementation, but it is not yet applicable in it.

Java SDK 1.4.2 Java Software Development Kit by Sun Microsystems. Used for im-
plementing the AIP software and the scenario. [45]

Jena Open source Java framework for building semantic web applications. It is used
by the Context Engine. [46]

MetaPost Graphics language with PostScript output by John Hobby, based on Knuth’s
METAFONT. Used for drawing architectures. [24]

MikTex Implementation of TeX and related programs for Microsoft Windows. Used to
write this thesis. [80]
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Protege Open source ontology editor and knowledge-base framework. Used to build
the ontology and knowledge files in OWL DL. [53]

Toolkit for Conceptual Modeling (TCM) Graphical tools for creating diagrams,
tables and trees. Used for drawing entity relationship diagrams, the class diagram and
the topology. [93]

tuProlog Java based Prolog for internet applications by Universita di Bologna. Tested
for use in the AIP implementation. [74]

WinEdt Editor for Microsoft Windows, qualified for TeX and LaTeX. Used to write
this thesis. [86]

Xalan Java based XSLT processor by the Apache XML Project. Used in the AIP
implementation. [68]

Xerces XML Parser (DOM, SAX, JAXP) in Java and other languages. Used in the
AIP implementation. [69]

XProlog Compact Prolog for Java based agents. Tested for use in the AIP implemen-
tation. [91]
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Config File for the Kitchen’s AIP
Module

01 <?xml version="1.0" encoding="UTF-8"?>

02
03 <AIP>

04 <ID>aip1 kitchen</ID>

05
06 <Application-Message>

07 <ID>sech</ID>

08 <IP>127.0.0.1:3001</IP>

09 </Application-Message>

10
11 <Neighbour>

12 <ID>aip6 body</ID>

13 <IP>127.0.0.1:5006</IP>

14 </Neighbour>

15
16 <Neighbour>

17 <ID>aip4 hall</ID>

18 <IP>127.0.0.1:5004</IP>

19 </Neighbour>

20
21 <KnowledgeBase>aip.JenaKnowledgeBase</KnowledgeBase>

22 <OntologyFile>sech ont.owl</OntologyFile>

23 <KnowledgeFile>sech1 kb.owl</KnowledgeFile>

24 <RuleEngine>aip.DroolsRuleEngine</RuleEngine>

25 <RuleFile>sech1.drl</RuleFile>

26 </AIP>
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Abbreviations

• AI: Artificial Intelligence . . . .Special field in computer science dealing with (ostensibly)
intelligent machines

• AIP: Autonomous Information Processing . . . . . . Software architecture providing the
local preprocessing of sensor data

• API: Application Programming Interface . . . . . . Interface provided by a computer pro-
gram

• DAML: DARPA Agent Markup Language . . . . . . DAML+OIL was a predecessor of
OWL, it is also based on RDF

• DL: Description Logics . . . . . . Family of languages for the representation of knowledge,
most of them are subsets of first order logic

• DOM: Document Object Model . . . . . . Interface for the access to HTML and XML
documents

• EPC: Electronic Product Code . . . . . Successor of UPC that supports the use of Radio
Frequency Identification

• EPC-IS: EPC Information Service . . . . . . Specification for a standard interface for
accessing EPC-related information.

• GTIN: Global Trade Item Number . . . . . . . . . . . Identification number for trade items

• IP: Internet Protocol . . . . . . IP specifies the format of packets and the addressing scheme.

• JSR: Java Specification Request . . . . . . Collection of requests on Java features to be
modified or added.

• JVM: Java Virtual Machine . . . . . . Virtual machine for running Java on different
platforms.

• NFC: Near Field Communication . . . . . . . Wireless technology for short-range wireless
interaction in consumer electronics, mobile devices and PCs.

• OIL: Ontology Inference Layer . . . . . . . . . . . . . DAML+OIL was a predecessor of OWL
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• OWL: Web Ontology Language . . . . . . Description-Logics-based declarative ontology
language

• PC: Personal Computer. .Certain type of microcomputer, used as workstation or home
computer

• PDA: Personal Digital Assistant . . . . . . . . . . . . . . . . . . . . . . . . . . . Small mobile computer

• RDF(S): Resource Description Framework (Schema) . . . . . . Declarative Semantic-
Web Ontology language for semantic nets

• RDQL: RDF Data Query Language . . . . . . Query language for RDF based on SquishQL.

• RFID: Radio Frequency Identification . . . . . . . . . . .Wireless technology for short range
identification.

• RMV: Rhein-Main-Verkehrsverbund . . . . . . Public transport association in Hessen,
Germany

• RuleML: Rule Markup Language . . . . . . Shared rule language permitting both, forward
and backward rules

• SIG: Bluetooth Special Interest Group. . . . . . Group of companies interested in the
further development of Bluetooth (see 1.2)

• SQL: Structured Query Language . . . . . . Computer language for the manipulation of
data in relational database systems

• SWRL: Semantic Web Rule Language . . . Rule language based on OWL and Datalog
RuleML

• UPC: Universal Product Code . . . . . . Original barcode language used e. g. by retail
store chains

• URI: Uniform Resource Identifier . . . . . . Global identifier in mark-up languages and
rsp. declarative standard

• URL: Uniform Resource Locator . . . . . . Global address of documents and other re-
sources on the World Wide Web.

• WLAN: Wireless Local Area Network . . . . .Wireless technology for connecting a local
computer network.

• WPAN: Wireless Personal Area Network . . . . . . A WPAN is a short range wireless
network interconnecting devices centered around a person’s workspace.

• XSLT: Extensible Stylesheet Language - Transformations . . . . . . XML language for
the transformation of XML-trees



List of Tables

1.1 Survey of wireless technologies. . . . . . . . . . . . . . . . . . . . . . . . . 8

4.1 Relation between TripleFact and Context Meta-Model. . . . . . . . . . . 59

4.2 Public interface of AIPInterface. . . . . . . . . . . . . . . . . . . . . . . . 66

99



100 LIST OF TABLES



List of Figures

2.1 Bayesian belief network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Learning program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Learning agent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Architecture To Support Context-Aware Applications. Relationship be-
tween applications and the context architecture. Arrows indicate data flow. 33

2.5 Policy-Based Adaptive Services. Basic modules of agents. . . . . . . . . . . 35

2.6 Policy-Based Adaptive Services. Agent types. . . . . . . . . . . . . . . . . 35

2.7 Singularity architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.8 Singularity middleware. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.9 System architecture for habitat monitoring. . . . . . . . . . . . . . . . . . 40

3.1 AIP architecture. Star topology. . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 AIP architecture. Three-layer-design. . . . . . . . . . . . . . . . . . . . . . 46

4.1 Class diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Entity relationship diagram of the AIP specific part of the ontology. . . . . 61

4.3 Sequence diagram of the AIP module’s initialization. . . . . . . . . . . . . 67

5.1 Smart Elderly Care Home. Applet showing the flat. . . . . . . . . . . . . . 72

5.2 Smart Elderly Care Home. System topology. . . . . . . . . . . . . . . . . . 74

5.3 Smart Elderly Care Home. Application specific ontology. . . . . . . . . . . 75

101



102 Danke

Danke

Mein Dank gilt allen, die mich im letzten halben Jahr bei der Erstellung dieser Arbeit
unterstützt haben.

Besonderer Dank gilt meinem Aufgabensteller Prof. Dr. Johann Schlichter für sein In-
teresse am Thema der Arbeit und für die Gelegenheit, diese Arbeit in Kooperation mit
Siemens Corporate Technology durchzuführen.

Ebenso danke ich Rudolf Kober und der Abteilung CT IC 6 bei Siemens für die Zusam-
menarbeit und die zur Verfügung gestellten Ressourcen.
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seine Software zu erklären, die in dieser Arbeit verwandt wurde.

Zudem danke ich Dr. Klaus Nagel, Nadine Perera, Raimund Steger und Jochen Rösch
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